Showing 111,261 - 111,280 results of 113,801 for search '(( 12 we decrease ) OR ( 5 ((((ng decrease) OR (mean decrease))) OR (a decrease)) ))', query time: 1.77s Refine Results
  1. 111261

    Image_1_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the seedlin... by Liuyin Li (11940365)

    Published 2022
    “…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
  2. 111262
  3. 111263

    Image_6_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  4. 111264

    Image_3_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  5. 111265

    Data_Sheet_1_Nutrient Intake and Nutrition Status in Vegetarians and Vegans in Comparison to Omnivores - the Nutritional Evaluation (NuEva) Study.PDF by Christine Dawczynski (5903111)

    Published 2022
    “…</p>Results<p>The increased exclusion of animal based foods in the diet (omnivores < flexitarians < vegetarians < vegans) is associated with a decreased intake of energy, saturated fat, cholesterol, disaccharides, and total sugar as well an increased intake of dietary fibers, beta carotene, vitamin E and K. …”
  6. 111266

    Data_Sheet_1_Nutrient Intake and Nutrition Status in Vegetarians and Vegans in Comparison to Omnivores - the Nutritional Evaluation (NuEva) Study.PDF by Christine Dawczynski (5903111)

    Published 2022
    “…</p>Results<p>The increased exclusion of animal based foods in the diet (omnivores < flexitarians < vegetarians < vegans) is associated with a decreased intake of energy, saturated fat, cholesterol, disaccharides, and total sugar as well an increased intake of dietary fibers, beta carotene, vitamin E and K. …”
  7. 111267

    Image_4_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  8. 111268

    Image_1_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  9. 111269
  10. 111270
  11. 111271

    Image_8_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  12. 111272

    Amelioration of Huntington’s disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington’s disease monkeys by In Ki Cho (6494564)

    Published 2019
    “…Expression of <i>mHTT</i> in differentiated astrocytes induced cytosolic mHTT aggregates and nuclear inclusions, suppressed the expression of <i>SOD2</i> and <i>PGC1</i>, reduced ability to uptake glutamate, decreased 4-aminopyridine (4-AP) response, and shifted I/V plot measured by electrophysiology, which are consistent with previous reports on HD astrocytes and patient brain samples. …”
  13. 111273

    Image_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  14. 111274

    Table_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.DOCX by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  15. 111275
  16. 111276

    DataSheet_1_Shifting sensitivity of septoria tritici blotch compromises field performance and yield of main fungicides in Europe.docx by Lise Nistrup Jørgensen (3284670)

    Published 2022
    “…<p>Septoria tritici blotch (STB; Zymoseptoria tritici) is a severe leaf disease on wheat in Northern Europe. …”
  17. 111277
  18. 111278

    Table_1_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.DOCX by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  19. 111279

    Image_7_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  20. 111280