Search alternatives:
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
12 we » 12 wt (Expand Search), 1_ we (Expand Search), 16 we (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
12 we » 12 wt (Expand Search), 1_ we (Expand Search), 16 we (Expand Search)
-
102101
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102102
Bonding, Structure, and Energetics of Gaseous E<sub>8</sub><sup>2+</sup> and of Solid E<sub>8</sub>(AsF<sub>6</sub>)<sub>2</sub> (E = S, Se)<sup>†</sup>
Published 2000“…The bonding in E<sub>8</sub><sup>2+</sup> (E = S, Se, Te) can also be understood in terms of a σ-bonded E<sub>8</sub> framework with additional bonding and charge delocalization occurring by a combination of transannular <i>n</i>π*−<i>n</i>π* (<i>n</i> = 3, 4, 5), and <i>n</i>p<sup>2</sup> → <i>n</i>σ* bonding. …”
-
102103
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102104
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102105
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102106
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102107
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102108
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102109
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102110
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102111
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102112
Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes
Published 2016“…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
-
102113
Image_8_Pharmacokinetic Behavior of Vincristine and Safety Following Intravenous Administration of Vincristine Sulfate Liposome Injection in Chinese Patients With Malignant Lymphom...
Published 2018“…</p><p>Results: In this phase Ia study, a total of eight subjects participated. VCR elimination from the circulation after injection of VSLI was characterized by a significantly increased maximum concentration (C<sub>max</sub>, 86.6 ng/mL) and plasma area under the plasma concentration-time curve from zero to infinity (AUC<sub>0-Inf</sub>, 222.1 ng/mL h), markedly decreased distribution volume (V<sub>z</sub>, 224.1 L) and plasma clearance (CL, 8.9 L/h) compared to lower C<sub>max</sub> (26.6 ng/mL) and AUC<sub>0-Inf</sub> (95.1 ng/mL h), larger V<sub>z</sub> (688.8 L) and CL (22.1 L/h) for VSI. …”
-
102114
Image_1_Pharmacokinetic Behavior of Vincristine and Safety Following Intravenous Administration of Vincristine Sulfate Liposome Injection in Chinese Patients With Malignant Lymphom...
Published 2018“…</p><p>Results: In this phase Ia study, a total of eight subjects participated. VCR elimination from the circulation after injection of VSLI was characterized by a significantly increased maximum concentration (C<sub>max</sub>, 86.6 ng/mL) and plasma area under the plasma concentration-time curve from zero to infinity (AUC<sub>0-Inf</sub>, 222.1 ng/mL h), markedly decreased distribution volume (V<sub>z</sub>, 224.1 L) and plasma clearance (CL, 8.9 L/h) compared to lower C<sub>max</sub> (26.6 ng/mL) and AUC<sub>0-Inf</sub> (95.1 ng/mL h), larger V<sub>z</sub> (688.8 L) and CL (22.1 L/h) for VSI. …”
-
102115
Image_6_Pharmacokinetic Behavior of Vincristine and Safety Following Intravenous Administration of Vincristine Sulfate Liposome Injection in Chinese Patients With Malignant Lymphom...
Published 2018“…</p><p>Results: In this phase Ia study, a total of eight subjects participated. VCR elimination from the circulation after injection of VSLI was characterized by a significantly increased maximum concentration (C<sub>max</sub>, 86.6 ng/mL) and plasma area under the plasma concentration-time curve from zero to infinity (AUC<sub>0-Inf</sub>, 222.1 ng/mL h), markedly decreased distribution volume (V<sub>z</sub>, 224.1 L) and plasma clearance (CL, 8.9 L/h) compared to lower C<sub>max</sub> (26.6 ng/mL) and AUC<sub>0-Inf</sub> (95.1 ng/mL h), larger V<sub>z</sub> (688.8 L) and CL (22.1 L/h) for VSI. …”
-
102116
Image_7_Pharmacokinetic Behavior of Vincristine and Safety Following Intravenous Administration of Vincristine Sulfate Liposome Injection in Chinese Patients With Malignant Lymphom...
Published 2018“…</p><p>Results: In this phase Ia study, a total of eight subjects participated. VCR elimination from the circulation after injection of VSLI was characterized by a significantly increased maximum concentration (C<sub>max</sub>, 86.6 ng/mL) and plasma area under the plasma concentration-time curve from zero to infinity (AUC<sub>0-Inf</sub>, 222.1 ng/mL h), markedly decreased distribution volume (V<sub>z</sub>, 224.1 L) and plasma clearance (CL, 8.9 L/h) compared to lower C<sub>max</sub> (26.6 ng/mL) and AUC<sub>0-Inf</sub> (95.1 ng/mL h), larger V<sub>z</sub> (688.8 L) and CL (22.1 L/h) for VSI. …”
-
102117
Image_3_Pharmacokinetic Behavior of Vincristine and Safety Following Intravenous Administration of Vincristine Sulfate Liposome Injection in Chinese Patients With Malignant Lymphom...
Published 2018“…</p><p>Results: In this phase Ia study, a total of eight subjects participated. VCR elimination from the circulation after injection of VSLI was characterized by a significantly increased maximum concentration (C<sub>max</sub>, 86.6 ng/mL) and plasma area under the plasma concentration-time curve from zero to infinity (AUC<sub>0-Inf</sub>, 222.1 ng/mL h), markedly decreased distribution volume (V<sub>z</sub>, 224.1 L) and plasma clearance (CL, 8.9 L/h) compared to lower C<sub>max</sub> (26.6 ng/mL) and AUC<sub>0-Inf</sub> (95.1 ng/mL h), larger V<sub>z</sub> (688.8 L) and CL (22.1 L/h) for VSI. …”
-
102118
Image_2_Pharmacokinetic Behavior of Vincristine and Safety Following Intravenous Administration of Vincristine Sulfate Liposome Injection in Chinese Patients With Malignant Lymphom...
Published 2018“…</p><p>Results: In this phase Ia study, a total of eight subjects participated. VCR elimination from the circulation after injection of VSLI was characterized by a significantly increased maximum concentration (C<sub>max</sub>, 86.6 ng/mL) and plasma area under the plasma concentration-time curve from zero to infinity (AUC<sub>0-Inf</sub>, 222.1 ng/mL h), markedly decreased distribution volume (V<sub>z</sub>, 224.1 L) and plasma clearance (CL, 8.9 L/h) compared to lower C<sub>max</sub> (26.6 ng/mL) and AUC<sub>0-Inf</sub> (95.1 ng/mL h), larger V<sub>z</sub> (688.8 L) and CL (22.1 L/h) for VSI. …”
-
102119
Data_Sheet_1_First-in-human pilot trial of combined intracoronary and intravenous mesenchymal stem cell therapy in acute myocardial infarction.docx
Published 2022“…The NT-proBNP level decreased (1362 ± 1801 vs. 109 ± 115 pg/mL, p = 0.0313), the LVEF increased (52.67 ± 12.75% vs. 62.47 ± 17.35%, p = 0.0246), and the wall motion score decreased (26.33 ± 5.57 vs. 22.33 ± 5.85, p = 0.0180) at the 12-month follow-up compared to the baseline values. …”
-
102120
Image_4_Pharmacokinetic Behavior of Vincristine and Safety Following Intravenous Administration of Vincristine Sulfate Liposome Injection in Chinese Patients With Malignant Lymphom...
Published 2018“…</p><p>Results: In this phase Ia study, a total of eight subjects participated. VCR elimination from the circulation after injection of VSLI was characterized by a significantly increased maximum concentration (C<sub>max</sub>, 86.6 ng/mL) and plasma area under the plasma concentration-time curve from zero to infinity (AUC<sub>0-Inf</sub>, 222.1 ng/mL h), markedly decreased distribution volume (V<sub>z</sub>, 224.1 L) and plasma clearance (CL, 8.9 L/h) compared to lower C<sub>max</sub> (26.6 ng/mL) and AUC<sub>0-Inf</sub> (95.1 ng/mL h), larger V<sub>z</sub> (688.8 L) and CL (22.1 L/h) for VSI. …”