Showing 99,141 - 99,160 results of 102,753 for search '(( 12 wt decrease ) OR ( 5 ((((mean decrease) OR (point decrease))) OR (a decrease)) ))', query time: 1.60s Refine Results
  1. 99141
  2. 99142
  3. 99143
  4. 99144

    p53 gene silienc by siRNA can reverse DEX induced apoptosis and cell cycle arrest of MC3T3-E1 cells. by Hui Li (32376)

    Published 2013
    “…<p>(A) Real time PCR examination of MC3T3-E1 cells in which the p53 gene function was silenced by siRNA (sip53-1, sip53-2) targeting p53mRNA; the mRNA expression level of p53 in the sip53-1and sip53-2 groups decreased significantly (P<0.05) compared to that in the FBS group and the siC group. …”
  5. 99145

    Loss of the Synaptic Vesicle Protein SV2B Results in Reduced Neurotransmission and Altered Synaptic Vesicle Protein Expression in the Retina by Catherine W. Morgans (267419)

    Published 2009
    “…In mice lacking SV2B, synaptic transmission at the synapse between photoreceptors and bipolar neurons was decreased, as evidenced by a significant reduction in the amplitude of the b-wave in electroretinogram recordings. …”
  6. 99146

    Table_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.DOCX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  7. 99147

    Table_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  8. 99148

    <i>In vitro</i> cardiomyocyte function in saline/RA and LPS/O<sub>2</sub> exposed mice at 8 weeks of age. by Markus Velten (77282)

    Published 2013
    “…<p>(A) % Peak shortening (% PS) was increased in the LPS/RA exposed mice. …”
  9. 99149

    Table_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  10. 99150

    Data_Sheet_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  11. 99151

    Table_2_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  12. 99152

    Data_Sheet_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  13. 99153

    Data_Sheet_6_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  14. 99154

    Table_4_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  15. 99155

    Table_7_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.xlsx by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  16. 99156

    Data_Sheet_1_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.PDF by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  17. 99157

    Data_Sheet_3_Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons.XLSX by Nicholas S. Kron (9377615)

    Published 2020
    “…The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. …”
  18. 99158

    <b>Gene x environment interactions as drivers of lifespan variation in nematodes</b> by Justin Havird (2812975)

    Published 2025
    “…Healthspan (measured as worm activity) generally decreased with age, but in different ways for different genetic strains. …”
  19. 99159

    DataSheet_1_Increased PD-1+Foxp3+ γδ T cells associate with poor overall survival for patients with acute myeloid leukemia.pdf by Jiamian Zheng (12067958)

    Published 2022
    “…</p>Results<p>We found that PD-1 gene was positively correlated with FOXP3 gene and highly co-expressed PD-1 and FOXP3 genes were associated with poor overall survival (OS) from TCGA database. Then, we detected a skewed distribution of γδ T cells with increased Vδ1 and decreased Vδ2 T cell subsets in AML. …”
  20. 99160