Search alternatives:
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), awd decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
12 wt » 2 wt (Expand Search), 1 wt (Expand Search)
wt decrease » we decrease (Expand Search), _ decrease (Expand Search), awd decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
12 wt » 2 wt (Expand Search), 1 wt (Expand Search)
-
241
-
242
-
243
-
244
-
245
-
246
-
247
-
248
-
249
-
250
-
251
-
252
-
253
-
254
-
255
-
256
-
257
-
258
-
259
Upcycling of Postconsumer Recyclate Polypropylene into Low Warping and High Toughness 3D Printable Filaments
Published 2025“…Incorporation of poly(butylene adipate-<i>co</i>-terephthalate) (PBAT) along with maleic anhydride grafted polypropylene (MAPP) in specific proportions led to a significant enhancement in mechanical properties, miscibility, crystallization behavior, and 3D printability. rPP/PBAT blends with 20 wt % PBAT and 10 wt % MAPP exhibited a 62-fold enhancement in elongation at break over rPP (from 1.88 to 118.29%) and a 72-fold increase in toughness (from 2 to 143.60 kJ/m<sup>3</sup>) with almost similar tensile strength. …”
-
260
Upcycling of Postconsumer Recyclate Polypropylene into Low Warping and High Toughness 3D Printable Filaments
Published 2025“…Incorporation of poly(butylene adipate-<i>co</i>-terephthalate) (PBAT) along with maleic anhydride grafted polypropylene (MAPP) in specific proportions led to a significant enhancement in mechanical properties, miscibility, crystallization behavior, and 3D printability. rPP/PBAT blends with 20 wt % PBAT and 10 wt % MAPP exhibited a 62-fold enhancement in elongation at break over rPP (from 1.88 to 118.29%) and a 72-fold increase in toughness (from 2 to 143.60 kJ/m<sup>3</sup>) with almost similar tensile strength. …”