Showing 1 - 20 results of 145,317 for search '(( 1_ teer decrease ) OR ( 10 ((((teer decrease) OR (a decrease))) OR (nn decrease)) ))', query time: 0.84s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Transepithelial electrical resistance (TEER) (N = 6). by Shirko Marcel Shokr (19173337)

    Published 2024
    “…High values were detected with high glucose (SMC/wo PA/HIGH: 4.4 k*Ωcm<sup>2</sup>; SMC/PA/HIGH: 5.51 kΩ*cm<sup>2</sup>; ALI/wo PA/HIGH: 5.23 kΩ*cm<sup>2</sup>; ALI/PA/HIGH: 5.46 kΩ*cm<sup>2</sup>) and lower values with low glucose (SMC/wo PA/LOW: 1.59 kΩ*cm<sup>2</sup>; SMC/PA/LOW: 1.59 kΩ*cm<sup>2</sup>; ALI/wo PA/LOW: 3.58 kΩ*cm<sup>2</sup>; ALI/PA/LOW: 3.27 kΩ*cm<sup>2</sup>. …”
  8. 8

    BA attenuated the decrease in the integrity and increase in the permeability of the epithelial barrier injury induced by LPS in Caco2 cell monolayers. by Luqiong Liu (11537092)

    Published 2024
    “…<p>(<b>A)</b> Changes in TEER with increasing culture time on days 1–22. (<b>B)</b> BA alleviated the LPS-induced decrease in TEER in Caco2 cells after treatment for 24 h. …”
  9. 9

    Y-27632 collaborated with BA to attenuate the increase in the integrity and decrease in the permeability of epithelial barrier injury induced by LPS in Caco2 monolayers. by Luqiong Liu (11537092)

    Published 2024
    “…<p>(<b>A)</b> Y-27632 collaborated with BA to attenuate the effect of LPS on TEER in Caco2 cells on days 1–22. (<b>B)</b> Y-27632 collaborated with BA to attenuate the effect of LPS on TEER in Caco2 cells on day 22. …”
  10. 10
  11. 11
  12. 12
  13. 13

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Methods<p>This study aimed to develop an in vitro model of the infant gut barrier treating Caco-2/HT29-MTX with 0.5, 0.8, and 1 mM sodium glycodeoxycholate (GDC).</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  14. 14

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Methods<p>This study aimed to develop an in vitro model of the infant gut barrier treating Caco-2/HT29-MTX with 0.5, 0.8, and 1 mM sodium glycodeoxycholate (GDC).</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  15. 15
  16. 16
  17. 17

    Video_1_Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges.AVI by Lu Yuan (125712)

    Published 2020
    “…Thus, single-time TEER is interpretable in two ways, depending whether increasing to or decreasing from its maximum. …”
  18. 18

    Data_Sheet_1_Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges.DOCX by Lu Yuan (125712)

    Published 2020
    “…Thus, single-time TEER is interpretable in two ways, depending whether increasing to or decreasing from its maximum. …”
  19. 19

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Methods<p>This study aimed to develop an in vitro model of the infant gut barrier treating Caco-2/HT29-MTX with 0.5, 0.8, and 1 mM sodium glycodeoxycholate (GDC).</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  20. 20

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Methods<p>This study aimed to develop an in vitro model of the infant gut barrier treating Caco-2/HT29-MTX with 0.5, 0.8, and 1 mM sodium glycodeoxycholate (GDC).</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”