Search alternatives:
wt decrease » _ decrease (Expand Search), awd decreased (Expand Search), step decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
wt decrease » _ decrease (Expand Search), awd decreased (Expand Search), step decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1041
Influence of Thiolate Ligands on Reductive N−O Bond Activation. Probing the O<sub>2</sub><sup>−</sup> Binding Site of a Biomimetic Superoxide Reductase Analogue and Examining the P...
Published 2011“…Like NO-bound <i>trans</i>-cysteinate-ligated SOR (SOR-NO), the rhombic <i>S</i> = 3/2 EPR signal of NO-bound <i>cis</i>-thiolate-ligated [Fe(S<sup>Me<sub>2</sub></sup>N<sub>4</sub>(tren)(NO)]<sup>+</sup> (<b>2</b>; <i>g</i> = 4.44, 3.54, 1.97), the isotopically sensitive ν<sub>NO</sub>(ν<sub><sup>15</sup>NO</sub>) stretching frequency (1685(1640) cm<sup>−1</sup>), and the 0.05 Å decrease in Fe−S bond length are shown to be consistent with <i>the oxidative addition of NO to Fe(II)</i> to afford an Fe(III)−NO<sup>−</sup> {FeNO}<sup>7</sup> species containing high-spin (<i>S</i> = 5/2) Fe(III) antiferromagnetically coupled to NO<sup>−</sup> (<i>S</i> = 1). …”
-
1042
Influence of Thiolate Ligands on Reductive N−O Bond Activation. Probing the O<sub>2</sub><sup>−</sup> Binding Site of a Biomimetic Superoxide Reductase Analogue and Examining the P...
Published 2011“…Like NO-bound <i>trans</i>-cysteinate-ligated SOR (SOR-NO), the rhombic <i>S</i> = 3/2 EPR signal of NO-bound <i>cis</i>-thiolate-ligated [Fe(S<sup>Me<sub>2</sub></sup>N<sub>4</sub>(tren)(NO)]<sup>+</sup> (<b>2</b>; <i>g</i> = 4.44, 3.54, 1.97), the isotopically sensitive ν<sub>NO</sub>(ν<sub><sup>15</sup>NO</sub>) stretching frequency (1685(1640) cm<sup>−1</sup>), and the 0.05 Å decrease in Fe−S bond length are shown to be consistent with <i>the oxidative addition of NO to Fe(II)</i> to afford an Fe(III)−NO<sup>−</sup> {FeNO}<sup>7</sup> species containing high-spin (<i>S</i> = 5/2) Fe(III) antiferromagnetically coupled to NO<sup>−</sup> (<i>S</i> = 1). …”
-
1043
Taurolidine lock solution for catheter-related bloodstream infections in pediatric patients: A meta-analysis
Published 2020“…The number of catheters removed due to infection or suspected infection was not significantly different between the two groups (RR: 0.68; 95% CI:0.22, 2.10; I<sup>2</sup> = 56%; P = 0.50) (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0231110#pone.0231110.g005" target="_blank">Fig 5</a>). …”
-
1044
-
1045
Image_1_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1046
Image_7_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1047
Table_1_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1048
Image_1_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1049
Image_3_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1050
Image_2_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase.TIF
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1051
Table_1_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1052
Image_7_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1053
Image_6_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1054
Image_4_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1055
Image_8_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1056
Image_4_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1057
Image_2_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase.TIF
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1058
Image_6_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1059
Image_3_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”
-
1060
Image_8_The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel...
Published 2019“…We propose to rename the urf2 gene as mrp gene for metal regulated PDE. …”