Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
c decrease » c decreased (Expand Search), _ decrease (Expand Search), a decrease (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
c decrease » c decreased (Expand Search), _ decrease (Expand Search), a decrease (Expand Search)
-
1401
Image_8_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOT...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1402
Image_12_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NO...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1403
Image_4_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOT...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1404
Image_1_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOT...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1405
Image_10_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NO...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1406
Image_7_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOT...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1407
Image_9_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOT...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1408
Image_3_Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOT...
Published 2020“…In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. …”
-
1409
-
1410
The effect of novel synthetic communities on plant shoot Pi content can be predicted by an NN.
Published 2018“…The validation prediction error on NN is significantly smaller than LM (<i>p</i>-value = 5.25 × 10<sup>−10</sup>) and INT (<i>p</i>-value = 4.65 × 10<sup>−7</sup>). …”
-
1411
-
1412
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1413
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1414
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1415
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1416
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1417
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1418
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1419
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
1420
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”