Showing 12,341 - 12,360 results of 123,374 for search '(( 2 d decrease ) OR ( 5 ((ng decrease) OR (((mean decrease) OR (a decrease)))) ))', query time: 2.20s Refine Results
  1. 12341

    Inflammation and hyperoxia decreases fractional anisotropy in corpus callosum. by Felix Brehmer (121526)

    Published 2012
    “…(B) Significant decrease of FA was observed in the corpus callosum of the injured groups (LN, VH, LH) compared with control group (VN) due to a significant increase of D⊥ (i.e. myelination defect). …”
  2. 12342
  3. 12343
  4. 12344

    Intraperitoneal injection protocol for inhibitors (A), inhibitors DAS and Y27632 reduced intestinal permeability (B) and intestinal adult worm burden (C) of infected mice. by Wen Wen Zheng (17721404)

    Published 2025
    “…Each group had five replicates. <b>C:</b> DAS and Y27632 reduced intestinal adult worm burden at 5 dpi. …”
  5. 12345
  6. 12346

    Intramolecularly Coordinated (6-(Diphenylphosphino)acenaphth-5-yl)stannanes. Repulsion vs Attraction of P- and Sn-Containing Substituents in the <i>peri</i> Positions by Emanuel Hupf (1489165)

    Published 2014
    “…The gas-phase structures of <b>2</b>–<b>5</b>, <b>8</b>, and the triarylstannyl cations ArPh<sub>2</sub>Sn<sup>+</sup> (<b>7a</b>) and [ArPh<sub>2</sub>Sn·NCMe]<sup>+</sup> (<b>7b</b>) were obtained by geometry optimization at the B3PW91/TZ level of theory. …”
  7. 12347

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  8. 12348

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  9. 12349

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  10. 12350

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  11. 12351

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  12. 12352

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  13. 12353

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  14. 12354

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  15. 12355

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  16. 12356

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  17. 12357

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  18. 12358

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  19. 12359

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  20. 12360

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”