Search alternatives:
ms decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
d decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
ms decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
d decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
821
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
822
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
823
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
824
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
825
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
826
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
827
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
828
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
829
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
830
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
831
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
832
-
833
Identification of +TIPs required for MT plus-end targeting of dynein-dynactin in the <i>C</i>. <i>elegans</i> early embryo.
Published 2017“…Scale bar, 5 μm; insets, 2 μm. <b>(C)</b> Cortical confocal section in one-cell embryos co-expressing GFP::p50<sup>DNC-2</sup> and EBP-2::mKate2, showing that depletion of dynein intermediate chain<sup>DYCI-1</sup> or LIS-1 decreases dynactin levels at MT plus ends. …”
-
834
-
835
Decreased levels of dCAP-D3/Condensin II result in a local loss of retrotransposon sequence <i>in vivo</i> and <i>in vitro</i>.
Published 2013“…C) PCRs performed as described in (A) on DNA from flies expressing two mutant alleles of a second Condensin II subunit, <i>dCap-H2</i> (<i>dCap-H2<sup>Z3-0019</sup>/dCap-H2<sup>Z3-</sup></i><sup>5163</sup>), demonstrates identical results seen for <i>dCap-D3</i> mutants. …”
-
836
Engineering of p150<sup>DNC-1</sup> mutants for functional characterization of dynactin's MT binding activity.
Published 2017“…Images correspond to maximum intensity projections over time (10 frames acquired every 200 ms). Scale bar, 5 μm. <b>(I)</b> Cortical confocal section of embryos as in <i>(H)</i>, additionally expressing EBP-2::mKate2 as a marker for MT plus ends. …”
-
837
-
838
-
839
Upcycling of Postconsumer Recyclate Polypropylene into Low Warping and High Toughness 3D Printable Filaments
Published 2025“…Incorporation of poly(butylene adipate-<i>co</i>-terephthalate) (PBAT) along with maleic anhydride grafted polypropylene (MAPP) in specific proportions led to a significant enhancement in mechanical properties, miscibility, crystallization behavior, and 3D printability. rPP/PBAT blends with 20 wt % PBAT and 10 wt % MAPP exhibited a 62-fold enhancement in elongation at break over rPP (from 1.88 to 118.29%) and a 72-fold increase in toughness (from 2 to 143.60 kJ/m<sup>3</sup>) with almost similar tensile strength. …”
-
840
Upcycling of Postconsumer Recyclate Polypropylene into Low Warping and High Toughness 3D Printable Filaments
Published 2025“…Incorporation of poly(butylene adipate-<i>co</i>-terephthalate) (PBAT) along with maleic anhydride grafted polypropylene (MAPP) in specific proportions led to a significant enhancement in mechanical properties, miscibility, crystallization behavior, and 3D printability. rPP/PBAT blends with 20 wt % PBAT and 10 wt % MAPP exhibited a 62-fold enhancement in elongation at break over rPP (from 1.88 to 118.29%) and a 72-fold increase in toughness (from 2 to 143.60 kJ/m<sup>3</sup>) with almost similar tensile strength. …”