Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
de decrease » we decrease (Expand Search), _ decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 de » 2 d (Expand Search), _ de (Expand Search), i de (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
de decrease » we decrease (Expand Search), _ decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 de » 2 d (Expand Search), _ de (Expand Search), i de (Expand Search)
-
1681
-
1682
-
1683
-
1684
-
1685
-
1686
-
1687
-
1688
S1 Data -
Published 2023“…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported a “decrease” in SH during confinement. …”
-
1689
-
1690
The participant demographic (n = 1844).
Published 2023“…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported a “decrease” in SH during confinement. …”
-
1691
Prevalence of smoking during COVID19 (n = 1844).
Published 2023“…</p><p>Results</p><p>The prevalence of smoking was 33.3%, 46.1%, and 21.1% for cigarettes (Cg), waterpipe (Wp), and E-cigarettes (ECg), respectively. Among the smokers, 38.5–45.8% reported a “no-change,” while 32.1–41.7% reported a “decrease” in SH during confinement. …”
-
1692
-
1693
-
1694
-
1695
-
1696
-
1697
-
1698
-
1699
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
-
1700
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”