Showing 20,181 - 20,200 results of 123,020 for search '(( 2 e decrease ) OR ( 5 ((point decrease) OR (((mean decrease) OR (a decrease)))) ))', query time: 2.05s Refine Results
  1. 20181
  2. 20182

    LR coefficients obtained from the biochemistry data. by Vladimir Naumov (8582277)

    Published 2021
    “…To generate compatible coefficient values for parameters with different ranges (e.g. lymphocyte count typically ranges from 0 to 3 while CRP ranges from 0 to 200) we normalized the data using the l2 normalization.…”
  3. 20183
  4. 20184
  5. 20185
  6. 20186

    The distribution of TH+ cells in the rostrocaudal and mediolateral axis is altered in <i>Wnt5a−/−</i> mice. by Emma R. Andersson (269983)

    Published 2008
    “…However, at E12.5 (F) and E14.5 (G) an altered distribution with a decrease in the number of TH+ cells in anterior levels and an increase in medial levels was seen (Two way ANOVA, for level and genotype, P = 0.0016 at E12.5, P<0.0001 at E14.5, N = 4). …”
  7. 20187
  8. 20188
  9. 20189
  10. 20190

    Cyclin G2 is a target molecule of Cn/NFATc2 in follicular keratinocytes. by Atsushi Fujimura (227683)

    Published 2011
    “…<p>(A) The microarray analysis identified 24 genes that showed down-regulated expression in PHK cells treated with either 11R-VIVIT or CsA; <i>ccng2</i> (cyclin G2) expression showed the greatest decrease after Cn/NFAT inhibition. …”
  11. 20191
  12. 20192

    Effects of a single dose of ivermectin on viral and clinical outcomes in asymptomatic sars-cov-2 infected subjects: A pilot clinical trial in lebanon by Samaha, Ali A.

    Published 2021
    “…Objective: This study was designed to determine the efficacy of ivermectin, an FDA-approved drug, in producing clinical benefits and decreasing the viral load of SARS-CoV-2 among asymptomatic subjects that tested positive for this virus in Lebanon. …”
    Get full text
    Get full text
  13. 20193

    Mutation spectrum of eUCR41 in sample CC. by Anna De Grassi (62033)

    Published 2010
    “…Two ranges of substitution frequency are shown: 40.5%–2.5% and <1.0%, since no substitution was detected in the range 2.5%–1.0%. …”
  14. 20194

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe­(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
  15. 20195

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe­(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
  16. 20196

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe­(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
  17. 20197

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe­(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
  18. 20198

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe­(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
  19. 20199

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe­(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”
  20. 20200

    Self-Assembly of Reactive Linear Cu<sub>3</sub> Building Blocks for Supramolecular Coordination Chemistry and Their Reactivity toward E<sub><i>n</i></sub> Ligand Complexes by Martin Fleischmann (2544508)

    Published 2016
    “…Reactions of <b>2a</b>–<b>c</b> with <i>cyclo</i>-E<sub>5</sub> complexes [Cp*Fe­(η<sup>5</sup>-E<sub>5</sub>)] (E = P (<b>C1</b>), As (<b>C2</b>)) led to the isolation of one-dimensional coordination polymers [Cu<sub>3</sub>(μ-X)<sub>2</sub>(μ-dpmp)<sub>2</sub>(μ,η<sup>1</sup>:η<sup>1</sup>-L)]<sub><i>n</i></sub>[BF<sub>4</sub>]<sub><i>n</i></sub> (<b>8a</b>–<b>b</b>: X = Cl–Br, L = <b>C1</b>; <b>9</b>: X = Cl, L = <b>C2</b>) and symmetrically substituted complex [Cu<sub>3</sub>(μ-I)<sub>2</sub>(μ-dpmp)<sub>2</sub>(η<sup>1</sup>-<b>C1</b>)<sub>2</sub>]<sup>+</sup> (<b>10</b>). …”