Showing 13,141 - 13,160 results of 23,081 for search '(( 2 step decrease ) OR ( 100 ((((we decrease) OR (mean decrease))) OR (a decrease)) ))', query time: 0.92s Refine Results
  1. 13141

    In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth by Nicholas T. Dee (6172670)

    Published 2018
    “…By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. …”
  2. 13142

    In Situ Mechanochemical Modulation of Carbon Nanotube Forest Growth by Nicholas T. Dee (6172670)

    Published 2018
    “…By correlating in situ kinetics measurements with spatial mapping of CNT orientation and density by X-ray scattering, we find that the average growth rate of individual CNTs is also mechanically modulated; specifically, a 100-fold increase in force causes a 4-fold decrease in average CNT lengthening rate. …”
  3. 13143

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  4. 13144

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  5. 13145

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  6. 13146

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  7. 13147

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  8. 13148

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  9. 13149

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  10. 13150

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  11. 13151

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  12. 13152

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  13. 13153

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  14. 13154

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  15. 13155

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  16. 13156

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  17. 13157

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  18. 13158

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  19. 13159

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”
  20. 13160

    Molecular Structures, Dipole Moments, and Electronic Properties of β‑HMX under External Electric Field from First-Principles Calculations by Yu-Shi Liu (6647582)

    Published 2024
    “…When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of β-HMX, the calculation results indicate that an increase in the bond length (N1–N3/N1′–N3′) of the triggering bond, an increase in the main <i>Q</i><sub>nitro</sub> (N3, N3′) value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. …”