Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
-
1141
-
1142
Stepped-Wedge Trial Diagram.
Published 2025“…</p><p>Methods and analysis</p><p>The QM2-RC encompasses three interconnected projects (Project 1, 2, and 3) aimed at developing a quality management strategy and evaluating its impact on system performance across New York State. …”
-
1143
Effects of S100A6 on CayBP/SIP-mediated β –catenin degradation.
Published 2013“…<p>(A) Co-immunoprecipitation assay showed that truncated mutant CacyBP/SIPΔS100 bind both Skp1 and Siah1, suggesting S100A6 did not affect the formation of Siah1-CacyBP/SIP-Skp1 unbiquitin ligase complex. …”
-
1144
Bonding, Ion Mobility, and Rate-Limiting Steps in Deintercalation Reactions with ThCr<sub>2</sub>Si<sub>2</sub>-type KNi<sub>2</sub>Se<sub>2</sub>
Published 2012“…Here, we study the nature of metal–metal bonding in the ThCr<sub>2</sub>Si<sub>2</sub> structure type by probing the rate-limiting steps in the oxidative deintercalation of KNi<sub>2</sub>Se<sub>2</sub>. …”
-
1145
Bonding, Ion Mobility, and Rate-Limiting Steps in Deintercalation Reactions with ThCr<sub>2</sub>Si<sub>2</sub>-type KNi<sub>2</sub>Se<sub>2</sub>
Published 2012“…Here, we study the nature of metal–metal bonding in the ThCr<sub>2</sub>Si<sub>2</sub> structure type by probing the rate-limiting steps in the oxidative deintercalation of KNi<sub>2</sub>Se<sub>2</sub>. …”
-
1146
Bonding, Ion Mobility, and Rate-Limiting Steps in Deintercalation Reactions with ThCr<sub>2</sub>Si<sub>2</sub>-type KNi<sub>2</sub>Se<sub>2</sub>
Published 2012“…Here, we study the nature of metal–metal bonding in the ThCr<sub>2</sub>Si<sub>2</sub> structure type by probing the rate-limiting steps in the oxidative deintercalation of KNi<sub>2</sub>Se<sub>2</sub>. …”
-
1147
Bonding, Ion Mobility, and Rate-Limiting Steps in Deintercalation Reactions with ThCr<sub>2</sub>Si<sub>2</sub>-type KNi<sub>2</sub>Se<sub>2</sub>
Published 2012“…Here, we study the nature of metal–metal bonding in the ThCr<sub>2</sub>Si<sub>2</sub> structure type by probing the rate-limiting steps in the oxidative deintercalation of KNi<sub>2</sub>Se<sub>2</sub>. …”
-
1148
-
1149
-
1150
-
1151
-
1152
-
1153
-
1154
-
1155
-
1156
-
1157
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1158
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1159
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
1160
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”