Search alternatives:
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
-
381
<i>prx-5/6</i> mutations likely cause a decrease in mmBCFA degradation.
Published 2013“…<i>elo-5</i>(<i>lf</i>)<i>; Ex</i>[<i>elo-6</i>] is a transgenic strain that significantly overexpressed the <i>elo-6</i> gene and was not sufficient to suppress the L1 arrest phenotype of <i>elo-5</i>(<i>lf</i>). …”
-
382
-
383
Elementary Steps in Olefin Metathesis: Nickelacyclobutanes via Cycloaddition to Nickel Carbenes
Published 2025“…We describe Ni(PP)(=CPh<sub>2</sub>) complexes that provide this missing evidence. …”
-
384
-
385
-
386
-
387
-
388
-
389
Differentially regulated genes in cells with increased or decreased expression of miR-106a-5p.
Published 2013“…(C) A Venn diagram of the overlap of altered genes with increased or decreased miR-106a-5p expression. …”
-
390
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
391
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
392
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
393
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
394
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
395
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
396
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
397
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
398
From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer
Published 2019“…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
-
399
-
400