Search alternatives:
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
-
9081
Characteristics of Gasless Combustion of Core–Shell Al@NiO Microparticles with Boosted Exothermic Performance
Published 2024“…The PM composite was not able to be ignited at all by a 5 W laser, while the core–shell counterpart ignited at 2.55 ms and was completely combusted within 6.50 ms accompanying a violent impulse.…”
-
9082
Characteristics of Gasless Combustion of Core–Shell Al@NiO Microparticles with Boosted Exothermic Performance
Published 2024“…The PM composite was not able to be ignited at all by a 5 W laser, while the core–shell counterpart ignited at 2.55 ms and was completely combusted within 6.50 ms accompanying a violent impulse.…”
-
9083
Maintenance of weight loss or stability in subjects with obesity: a retrospective longitudinal analysis of a real-world population
Published 2018“…</p> <p><b>Methods:</b> A retrospective observational longitudinal study of subjects with obesity was conducted using the General Electric Centricity electronic medical record database. …”
-
9084
IG feature selection process.
Published 2025“…The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. …”
-
9085
RFE feature selection process.
Published 2025“…The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. …”
-
9086
CICID2017 dataset information.
Published 2025“…The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. …”
-
9087
Shows the basic architecture of an autoencoder.
Published 2025“…The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. …”
-
9088
Architecture of deep neural networks.
Published 2025“…The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. …”
-
9089
Proposed model framework.
Published 2025“…The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. …”
-
9090
WUSTL-EHMS-2020 dataset information.
Published 2025“…The proposed model employs Information Gain (IG) and Recursive Feature Elimination (RFE) in parallel to select the top 50% of features, from which intersection and union subsets are created, followed by a deep autoencoder (DAE) to reduce dimensionality without losing important data. …”
-
9091
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9092
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9093
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9094
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9095
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9096
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9097
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9098
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9099
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”
-
9100
Natural Derivatives of Selective HDAC8 Inhibitors with Potent <i>in Vivo</i> Antitumor Efficacy against Breast Cancer
Published 2024“…XZB108, selectively inhibited HDAC8 (IC<sub>50</sub> = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. …”