Showing 501 - 520 results of 134,248 for search '(( 2 we decrease ) OR ( 5 ((wt decrease) OR (((mean decrease) OR (a decrease)))) ))', query time: 1.30s Refine Results
  1. 501
  2. 502

    Conditional stabilization of β-catenin decreases frequency of Tbr2-expressing cells. by Christopher A. Mutch (243132)

    Published 2010
    “…This analysis also resulted in a markedly decreased Tbr2+ intermediate progenitor population in cortices (<b>F</b>) when compared to NesCre- control. …”
  3. 503

    Dispersion-temperature of microgels decreases at lower pHs. by Chi-Shuo Chen (234719)

    Published 2015
    “…Dispersion temperature dropped ~2˚C with a 0.2 pH decrease. Each data point represents mean (+/−SD) of six measurements made in each of six replicate samples.…”
  4. 504
  5. 505

    Inhibition of IL-17A at tumor sites decreases the intratumoral microvessel density. by Keiji Hayata (277090)

    Published 2013
    “…<p>(A) The endothelial maker CD31-stained sections of tumor tissue are shown in Ad-SNC and Ad-si-IL-17 treatment models, Ad-si-IL-17 treatment decreased the intratumoral microvessel density compared with Ad-SNC. …”
  6. 506
  7. 507
  8. 508

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  9. 509

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  10. 510

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  11. 511

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  12. 512

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  13. 513

    Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer by Giorgia Urbinati (554921)

    Published 2015
    “…Two of the five siRNAs tested were found to efficiently inhibit mRNA of both <i>TMPRSS2-ERG</i> variants and to decrease ERG protein expression. …”
  14. 514
  15. 515

    Activin A decreases MPTP and LPS-induced inflammation. by Sandy Stayte (728461)

    Published 2017
    “…<p>Stereological quantification of the left SNpc demonstrated activin A significantly decreased the number of GFAP-immunoreactive cells (A) and Iba1-immunoreactive cells (B) in the SNpc following MPTP. …”
  16. 516
  17. 517

    Drugs which cluster on the 'anxiolytic' group decrease 5-HT turnover in the brain. by Caio Maximino (100467)

    Published 2014
    “…Points represent means and error bars represent standard errors. A negative correlation is found between the decrease in serotonin turnover and the increase in time on white produced by a drug (r<sup>2</sup> = 0.5688, p = 0.0073).…”
  18. 518
  19. 519
  20. 520