Showing 101 - 120 results of 132,821 for search '(( 2 we decrease ) OR ( 5 ((wt decrease) OR (((nn decrease) OR (a decrease)))) ))', query time: 1.71s Refine Results
  1. 101
  2. 102
  3. 103
  4. 104
  5. 105
  6. 106
  7. 107

    GluN2A(D731N) decreases channel open probability. by Kai Gao (120150)

    Published 2017
    “…The receptors were activated by EC<sub>50</sub> concentrations of glutamate with saturating concentration (100 μM) of glycine at holding potential of -40 mV. The di-heteromeric mutant (2A-D731N) and tri-heteromeric receptors with two-copies of the mutant subunit (D731N/D731N) showed a prolonged inhibition rate, reflecting a decreased channel open probability. …”
  8. 108
  9. 109
  10. 110

    Conditional stabilization of β-catenin decreases frequency of Tbr2-expressing cells. by Christopher A. Mutch (243132)

    Published 2010
    “…This analysis also resulted in a markedly decreased Tbr2+ intermediate progenitor population in cortices (<b>F</b>) when compared to NesCre- control. …”
  11. 111
  12. 112
  13. 113
  14. 114

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  15. 115

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  16. 116

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  17. 117

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  18. 118

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  19. 119

    Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer by Giorgia Urbinati (554921)

    Published 2015
    “…Two of the five siRNAs tested were found to efficiently inhibit mRNA of both <i>TMPRSS2-ERG</i> variants and to decrease ERG protein expression. …”
  20. 120