Search alternatives:
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 we » 2 e (Expand Search), 2 de (Expand Search), _ we (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 we » 2 e (Expand Search), 2 de (Expand Search), _ we (Expand Search)
-
18581
Image_2_Streptococcus mutans Secreted Products Inhibit Candida albicans Induced Oral Candidiasis.JPEG
Published 2020“…Active S. mutans UA159 supernatant filtrate components were extracted via liquid-liquid partition and fractionated on a C-18 silica column to resolve S. mutans fraction 1 (SM-F1) and fraction 2 (SM-F2). We found anti-biofilm activity for both SM-F1 and SM-F2 in a dose dependent manner and fungal growth was reduced by 2.59 and 5.98 log for SM-F1 and SM-F2, respectively. …”
-
18582
Table_1_The β2-Subunit of Voltage-Gated Calcium Channels Regulates Cardiomyocyte Hypertrophy.pdf
Published 2021“…We report that a pool of Ca<sub>v</sub>β<sub>2</sub> is targeted to the nucleus in cardiomyocytes and that the expression of this nuclear fraction decreases during in vitro and in vivo induction of cardiac hypertrophy. …”
-
18583
Video1_P2X7 Purinoceptor Affects Ectopic Calcification of Dystrophic Muscles.AVI
Published 2022“…To investigate the role of P2X7 in dystrophic calcification, we utilised the Dmd<sup>mdx-βgeo</sup> dystrophin-null mouse model of DMD crossed with a global P2X7 knockout (P2rx7<sup>−/−</sup>) or with our novel P2X7 knockin-knockout mouse (P2x7<sup>KiKo</sup>), which expresses P2X7 in macrophages but not muscle cells. …”
-
18584
-
18585
Extracellular Signal-Regulated Kinase 1/2 Signaling Pathway Is Required for Endometrial Decidualization in Mice and Human
Published 2013“…To determine the role and regulation of ERK1/2 signaling during implantation and decidualization, we examine ERK1/2 signaling in the mouse uterus during early pregnancy using immunostaining and qPCR. …”
-
18586
-
18587
Table_1_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18588
Table_7_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18589
Image_1_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18590
Image_3_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18591
Table_6_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18592
Table_3_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18593
Image_4_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18594
Image_5_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18595
Image_7_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18596
Table_4_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18597
Table_5_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18598
Image_6_Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2n = 4x = 32, BBDD) and Anemone baldensis (2n = 6x = 48, AABBDD) and Their Parental Species Show...
Published 2022“…However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). …”
-
18599
IL-33-Dependent Endothelial Activation Contributes to Apoptosis and Renal Injury in <i>Orientia tsutsugamushi</i>-Infected Mice
Published 2016“…We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2), and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. …”
-
18600
Image_2_Immune Monitoring Assay for Extracorporeal Photopheresis Treatment Optimization After Heart Transplantation.pdf
Published 2021“…</p>Results<p>All BDCA<sup>+</sup> DC subsets (BDCA1<sup>+</sup> DCs: p < 0.01, BDCA2<sup>+</sup> DCs: p < 0.01, BDCA3<sup>+</sup> DCs: p < 0.01, BDCA4<sup>+</sup> DCs: p < 0.01) as well as total T<sub>regs</sub>(p < 0.01) and CD39<sup>+</sup> T<sub>regs</sub>(p < 0.01) increased during ECP treatment, while CD62L<sup>+</sup> T<sub>regs</sub> decreased (p < 0.01). …”