Showing 101,561 - 101,580 results of 104,723 for search '(( 3 points decrease ) OR ( 5 ((((step decrease) OR (nn decrease))) OR (a decrease)) ))', query time: 1.96s Refine Results
  1. 101561

    Table1_Survival of plant seeds in digestate storage—with and without prior anaerobic digestion.docx by Juliane Hahn (447381)

    Published 2024
    “…With increasing exposure time, viability decreased after a lag-phase, remained stable or even increased. …”
  2. 101562

    Image_1_Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the seedlin... by Liuyin Li (11940365)

    Published 2022
    “…In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>-</sup> ratio treatments, including 100/0 (N<sub>a</sub>), 75/25 (N<sub>r1</sub>), 50/50 (N<sub>r2</sub>), 25/75 (N<sub>r3</sub>), and 0/100 (N<sub>n</sub>) were tested in this study. …”
  3. 101563
  4. 101564

    Table2_Survival of plant seeds in digestate storage—with and without prior anaerobic digestion.docx by Juliane Hahn (447381)

    Published 2024
    “…With increasing exposure time, viability decreased after a lag-phase, remained stable or even increased. …”
  5. 101565

    Image_6_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  6. 101566

    Image_3_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  7. 101567

    Image1_Survival of plant seeds in digestate storage—with and without prior anaerobic digestion.pdf by Juliane Hahn (447381)

    Published 2024
    “…With increasing exposure time, viability decreased after a lag-phase, remained stable or even increased. …”
  8. 101568

    Data_Sheet_1_Nutrient Intake and Nutrition Status in Vegetarians and Vegans in Comparison to Omnivores - the Nutritional Evaluation (NuEva) Study.PDF by Christine Dawczynski (5903111)

    Published 2022
    “…</p>Results<p>The increased exclusion of animal based foods in the diet (omnivores < flexitarians < vegetarians < vegans) is associated with a decreased intake of energy, saturated fat, cholesterol, disaccharides, and total sugar as well an increased intake of dietary fibers, beta carotene, vitamin E and K. …”
  9. 101569

    Data_Sheet_1_Nutrient Intake and Nutrition Status in Vegetarians and Vegans in Comparison to Omnivores - the Nutritional Evaluation (NuEva) Study.PDF by Christine Dawczynski (5903111)

    Published 2022
    “…</p>Results<p>The increased exclusion of animal based foods in the diet (omnivores < flexitarians < vegetarians < vegans) is associated with a decreased intake of energy, saturated fat, cholesterol, disaccharides, and total sugar as well an increased intake of dietary fibers, beta carotene, vitamin E and K. …”
  10. 101570

    Image_4_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  11. 101571

    Table3_Survival of plant seeds in digestate storage—with and without prior anaerobic digestion.docx by Juliane Hahn (447381)

    Published 2024
    “…With increasing exposure time, viability decreased after a lag-phase, remained stable or even increased. …”
  12. 101572

    Data_Sheet_1_The Natural History of Untreated Primary Hypogammaglobulinemia in Adults: Implications for the Diagnosis and Treatment of Common Variable Immunodeficiency Disorders (C... by Rohan Ameratunga (6988931)

    Published 2019
    “…Over the course of 12 years, 120 patients were enrolled in the NZ hypogammaglobulinemia study (NZHS) including 59 who were asymptomatic.</p><p>Results: Five patients with profound primary hypogammaglobulinemia (IgG < 3 g/l), who were not on regular SCIG/IVIG have remained well for a mean duration of 139 months. …”
  13. 101573

    Image_1_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  14. 101574
  15. 101575
  16. 101576

    Image_8_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  17. 101577

    Amelioration of Huntington’s disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington’s disease monkeys by In Ki Cho (6494564)

    Published 2019
    “…Expression of <i>mHTT</i> in differentiated astrocytes induced cytosolic mHTT aggregates and nuclear inclusions, suppressed the expression of <i>SOD2</i> and <i>PGC1</i>, reduced ability to uptake glutamate, decreased 4-aminopyridine (4-AP) response, and shifted I/V plot measured by electrophysiology, which are consistent with previous reports on HD astrocytes and patient brain samples. …”
  18. 101578

    Image_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.JPEG by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  19. 101579

    Table_2_Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.DOCX by Yun-Shil Gho (4172008)

    Published 2020
    “…In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. …”
  20. 101580