Search alternatives:
point decrease » point increase (Expand Search)
ng decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 point » _ point (Expand Search)
point decrease » point increase (Expand Search)
ng decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 point » _ point (Expand Search)
-
16141
Overhead view of the eye drop aid.
Published 2025“…Although the aid was designed to require minimal grip force, we measured the force needed to dispense a single drop for five commonly used clinical eye drops.…”
-
16142
Factors associated with schistosome infection.
Published 2024“…Overall, the prevalence of schistosome infection was 55.9% (n = 2486, CI 95%: 53.3–58.5). A statistically significant association was found with age group (increased prevalence in 31–47 years old, compared to 16–20 years old (aPR = 1.15, CI 95%: 1.02–1.29) and with uptake of antimalaria preventive treatment (decreased prevalence, aPR = 0.85, CI 95%: 0.77–0.95). …”
-
16143
Frequency-Dependent Effects of Pulsatile Flow on Particle Inertial Focusing and Separation in Sinusoidal Microchannels
Published 2025“…At 5 Hz, the purity decreased notably for 15 μm particles (from 94% to 71%) and slightly for 10 μm particles (from 99% to 94%), while at 10 Hz, purities remained close to the steady flow values. …”
-
16144
Frequency-Dependent Effects of Pulsatile Flow on Particle Inertial Focusing and Separation in Sinusoidal Microchannels
Published 2025“…At 5 Hz, the purity decreased notably for 15 μm particles (from 94% to 71%) and slightly for 10 μm particles (from 99% to 94%), while at 10 Hz, purities remained close to the steady flow values. …”
-
16145
Frequency-Dependent Effects of Pulsatile Flow on Particle Inertial Focusing and Separation in Sinusoidal Microchannels
Published 2025“…At 5 Hz, the purity decreased notably for 15 μm particles (from 94% to 71%) and slightly for 10 μm particles (from 99% to 94%), while at 10 Hz, purities remained close to the steady flow values. …”
-
16146
Frequency-Dependent Effects of Pulsatile Flow on Particle Inertial Focusing and Separation in Sinusoidal Microchannels
Published 2025“…At 5 Hz, the purity decreased notably for 15 μm particles (from 94% to 71%) and slightly for 10 μm particles (from 99% to 94%), while at 10 Hz, purities remained close to the steady flow values. …”
-
16147
Frequency-Dependent Effects of Pulsatile Flow on Particle Inertial Focusing and Separation in Sinusoidal Microchannels
Published 2025“…At 5 Hz, the purity decreased notably for 15 μm particles (from 94% to 71%) and slightly for 10 μm particles (from 99% to 94%), while at 10 Hz, purities remained close to the steady flow values. …”
-
16148
Frequency-Dependent Effects of Pulsatile Flow on Particle Inertial Focusing and Separation in Sinusoidal Microchannels
Published 2025“…At 5 Hz, the purity decreased notably for 15 μm particles (from 94% to 71%) and slightly for 10 μm particles (from 99% to 94%), while at 10 Hz, purities remained close to the steady flow values. …”
-
16149
-
16150
-
16151
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16152
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16153
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16154
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16155
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16156
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16157
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16158
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16159
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
-
16160
Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation
Published 2022“…When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”