Search alternatives:
nm decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 we » 2 e (Expand Search), 2 de (Expand Search), _ we (Expand Search)
nm decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 we » 2 e (Expand Search), 2 de (Expand Search), _ we (Expand Search)
-
61
-
62
-
63
-
64
-
65
Conditional stabilization of β-catenin decreases frequency of Tbr2-expressing cells.
Published 2010“…This analysis also resulted in a markedly decreased Tbr2+ intermediate progenitor population in cortices (<b>F</b>) when compared to NesCre- control. …”
-
66
-
67
Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons
Published 2015“…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
-
68
Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons
Published 2015“…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
-
69
Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons
Published 2015“…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
-
70
Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons
Published 2015“…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
-
71
Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons
Published 2015“…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
-
72
Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer
Published 2015“…Two of the five siRNAs tested were found to efficiently inhibit mRNA of both <i>TMPRSS2-ERG</i> variants and to decrease ERG protein expression. …”
-
73
-
74
-
75
-
76
Overexpression of Pax6 decreases Olig2 protein levels.
Published 2011“…(<b>a</b>) Oli-Neu cells were transfected with flag-tagged WT Pax6 (WT), Pax6(5a)R128C (128), or eGFP control vector (-). …”
-
77
-
78
-
79
Triton-induced autolysis is decreased in the absence of WalH.
Published 2016“…Lysis was determined as the decrease in OD<sub>600 nm</sub> over time and indicated as a percentage of the initial OD (measured OD<sub>600 nm</sub> / initial OD<sub>600 nm</sub>). …”
-
80
A Yoga Strengthening Program Designed to Minimize the Knee Adduction Moment for Women with Knee Osteoarthritis: A Proof-Of-Principle Cohort Study
Published 2015“…A secondary objective was to determine whether the program could improve mobility and fitness, and decrease peak KAM during gait. …”