Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a step » _ step (Expand Search)
-
1161
At E9.5 Actb<sup>−/−</sup> neural crest cells show a significant decrease of cadherin-11 expression.
Published 2014“…<p>(A) Quantification of N-cadherin intensities in Actb<sup>+/+</sup> and Actb<sup>−/−</sup> migratory cells adjacent to the neural tube at E8.5 and E9.5 (left graph, Y-axis: relative intensities) and colocalization of N-cadherin with p75 in migratory cells at E8.5 and E9.5 (right graph, Y-axis: colocalization index on a scale from 0 to 1). …”
-
1162
Trend of temperature decrease in thermogradient freezer during the night from 7:00 P.M. to 5:00 A.M.
Published 2022“…<p>Trend of temperature decrease in thermogradient freezer during the night from 7:00 P.M. to 5:00 A.M.…”
-
1163
-
1164
rVλ6Wil fibrils cause a decrease in cardiomyocytes MTT reduction without inducing cell death.
Published 2015“…(C) Cell number, quantified using crystal violet (black) did not decrease over 72 h of incubation with 1 μM rVλ6Wil fibrils despite a decrease in MMT reduction (grey; n = 3 samples per time point). …”
-
1165
Two strategies used by patients with lumbar spinal stenosis to alleviate symptoms.
Published 2018“…(b) Trunk upright posture with a decreased step length and hip extension angle. …”
-
1166
-
1167
-
1168
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1169
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1170
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1171
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1172
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1173
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1174
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1175
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1176
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1177
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1178
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1179
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
-
1180