Showing 61 - 80 results of 149,733 for search '(( 5 ((((teer decrease) OR (a decrease))) OR (nn decrease)) ) OR ( a we decrease ))', query time: 1.43s Refine Results
  1. 61
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  7. 67

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  8. 68

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  9. 69

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  10. 70

    Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons by Jiacheng Ma (1530640)

    Published 2015
    “…We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). …”
  11. 71

    Image_1_miR-144-5p and miR-451a Inhibit the Growth of Cholangiocarcinoma Cells Through Decreasing the Expression of ST8SIA4.tif by Wan Fu (3681799)

    Published 2021
    “…This study aimed to investigate the action mechanism of miR-144-5p and miR-451a in cholangiocarcinoma. We found that miR-144-5p and miR-451a were significantly decreased in cholangiocarcinoma patient samples compared to the adjacent normal bile duct samples. …”
  12. 72

    Image_4_miR-144-5p and miR-451a Inhibit the Growth of Cholangiocarcinoma Cells Through Decreasing the Expression of ST8SIA4.tif by Wan Fu (3681799)

    Published 2021
    “…This study aimed to investigate the action mechanism of miR-144-5p and miR-451a in cholangiocarcinoma. We found that miR-144-5p and miR-451a were significantly decreased in cholangiocarcinoma patient samples compared to the adjacent normal bile duct samples. …”
  13. 73

    Image_3_miR-144-5p and miR-451a Inhibit the Growth of Cholangiocarcinoma Cells Through Decreasing the Expression of ST8SIA4.tif by Wan Fu (3681799)

    Published 2021
    “…This study aimed to investigate the action mechanism of miR-144-5p and miR-451a in cholangiocarcinoma. We found that miR-144-5p and miR-451a were significantly decreased in cholangiocarcinoma patient samples compared to the adjacent normal bile duct samples. …”
  14. 74

    Image_2_miR-144-5p and miR-451a Inhibit the Growth of Cholangiocarcinoma Cells Through Decreasing the Expression of ST8SIA4.tif by Wan Fu (3681799)

    Published 2021
    “…This study aimed to investigate the action mechanism of miR-144-5p and miR-451a in cholangiocarcinoma. We found that miR-144-5p and miR-451a were significantly decreased in cholangiocarcinoma patient samples compared to the adjacent normal bile duct samples. …”
  15. 75
  16. 76

    Acute myocardial infarction changes bone marrow cell composition and decreases endothelial differentiation capability. by Ming-Yao Chang (700415)

    Published 2015
    “…<p><b>(A)</b> CD14 positive cells increased at day 1 post-MI while the CD16 positive cell decreased at day 4 and day 7 after infarction in <b>B</b> with n ≥3 per groups. …”
  17. 77
  18. 78
  19. 79

    Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease by Christine M. LaPash Daniels (796881)

    Published 2015
    “…Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. …”
  20. 80

    CD47 expression is decreased in hematopoietic progenitor cells in patients with myelofibrosis by A. Nonino (6072632)

    Published 2018
    “…We compared CD47 expression in hematopoietic stem and progenitor cells of patients with MF and controls and found it to be decreased in progenitors of MF. …”