Showing 20,941 - 20,960 results of 125,061 for search '(( 5 ((026 decrease) OR (a decrease)) ) OR ( a ((mean decrease) OR (point decrease)) ))', query time: 1.74s Refine Results
  1. 20941

    Predicted targets of miR-337-3p decrease in mRNA expression on over-expression of miR-337-3p. by Liqin Du (158175)

    Published 2012
    “…(E) Proportional Venn diagram showing the relationship among the genes that decrease ≥2 fold in expression and contain one or more of the five 7-mers corresponding to the mature miR-337-3p sequences.…”
  2. 20942
  3. 20943

    KAIST low-speed wind tunnel and its components. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  4. 20944

    Scattering efficiency by particle diameter. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  5. 20945

    Relative transmission rate by wavelength. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  6. 20946

    Metronidazole-treated <i>Tg(Inta11:NTR)</i> larvae show defects in median fin fold mesenchyme migration, a reduction in median and pectoral fin fold size and a reduction in endoske... by Robert L. Lalonde (4840260)

    Published 2018
    “…Inta11: NTR + MTZ larvae show a decrease in pectoral fin fold area at 72hpf, and 7dpf, as well as a reduction in endoskeletal disc size at 7dpf (J). …”
  7. 20947

    Comparative levels of differentially expressed genes over time in a murine staphylococcal SSTI model. by Rebecca A. Brady (408084)

    Published 2015
    “…Transcripts that are common to multiple time points are shown by the overlap. (A) Significantly increased transcripts in infected ears compared to non-infected ears from the same challenged mice (local response); (B) Significantly decreased transcripts in infected ears compared to non-infected ears from the same challenged mice (local response); (C) Significantly increased transcripts in the non-infected ears of challenged mice compared to naïve mice (systemic response); (D) Significantly decreased transcripts in the non-infected ears of challenged mice compared to naïve mice (systemic response).…”
  8. 20948

    Failure mode of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  9. 20949

    Positions of AE probes and strain gauges. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  10. 20950

    Sampling site. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  11. 20951

    Received AE waves. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  12. 20952

    Test schemes for soft rocks. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  13. 20953

    Failure mode of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  14. 20954

    S1 Table - by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  15. 20955

    AE monitoring system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  16. 20956

    MTS-370.25 fatigue resting system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  17. 20957

    Schematic diagram of the AE testing system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  18. 20958

    Strain at different positions of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  19. 20959
  20. 20960

    Model results for green turtles and monthly mean maximum air temperature. by Jaylene Flint (4330021)

    Published 2017
    “…<p>↑ denotes increased strandings rates with increased mean maximum air temperature. ↓ denotes decreased stranding rates with increased mean maximum air temperature. …”