Search alternatives:
point decrease » point increase (Expand Search)
026 decrease » _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
point decrease » point increase (Expand Search)
026 decrease » _ decrease (Expand Search), nn decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
20941
Predicted targets of miR-337-3p decrease in mRNA expression on over-expression of miR-337-3p.
Published 2012“…(E) Proportional Venn diagram showing the relationship among the genes that decrease ≥2 fold in expression and contain one or more of the five 7-mers corresponding to the mature miR-337-3p sequences.…”
-
20942
-
20943
KAIST low-speed wind tunnel and its components.
Published 2024“…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
-
20944
Scattering efficiency by particle diameter.
Published 2024“…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
-
20945
Relative transmission rate by wavelength.
Published 2024“…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
-
20946
Metronidazole-treated <i>Tg(Inta11:NTR)</i> larvae show defects in median fin fold mesenchyme migration, a reduction in median and pectoral fin fold size and a reduction in endoske...
Published 2018“…Inta11: NTR + MTZ larvae show a decrease in pectoral fin fold area at 72hpf, and 7dpf, as well as a reduction in endoskeletal disc size at 7dpf (J). …”
-
20947
Comparative levels of differentially expressed genes over time in a murine staphylococcal SSTI model.
Published 2015“…Transcripts that are common to multiple time points are shown by the overlap. (A) Significantly increased transcripts in infected ears compared to non-infected ears from the same challenged mice (local response); (B) Significantly decreased transcripts in infected ears compared to non-infected ears from the same challenged mice (local response); (C) Significantly increased transcripts in the non-infected ears of challenged mice compared to naïve mice (systemic response); (D) Significantly decreased transcripts in the non-infected ears of challenged mice compared to naïve mice (systemic response).…”
-
20948
Failure mode of the sample.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20949
Positions of AE probes and strain gauges.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20950
Sampling site.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20951
Received AE waves.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20952
Test schemes for soft rocks.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20953
Failure mode of the sample.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20954
S1 Table -
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20955
AE monitoring system.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20956
MTS-370.25 fatigue resting system.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20957
Schematic diagram of the AE testing system.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20958
Strain at different positions of the sample.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
20959
-
20960
Model results for green turtles and monthly mean maximum air temperature.
Published 2017“…<p>↑ denotes increased strandings rates with increased mean maximum air temperature. ↓ denotes decreased stranding rates with increased mean maximum air temperature. …”