Showing 21,281 - 21,300 results of 125,061 for search '(( 5 ((026 decrease) OR (a decrease)) ) OR ( a ((point decrease) OR (mean decrease)) ))', query time: 2.05s Refine Results
  1. 21281
  2. 21282
  3. 21283
  4. 21284

    Polysome-associated cellular mRNAs are longer and more AU-rich. by William J. Neidermyer Jr. (6866672)

    Published 2019
    “…<p>(A) Analysis of cellular mRNAs with high cytoplasmic abundance (purple) or low cytoplasmic abundance (orange) as compared to mRNAs with cytoplasmic abundance within 2 standard deviations of the mean abundance (gray) in uninfected cells. …”
  5. 21285
  6. 21286
  7. 21287
  8. 21288
  9. 21289
  10. 21290
  11. 21291
  12. 21292
  13. 21293
  14. 21294
  15. 21295
  16. 21296

    Tree cover change in percent between 2000 and 2010 (TCC) for 5×5 km grid cells. by Jonas Nüchel (4093243)

    Published 2017
    “…<p>Green colors indicate an increase, gray colors indicate a slight increase or decrease and red colors indicate a decrease in tree cover between 2000 and 2010. …”
  17. 21297

    Image_6_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  18. 21298

    Image_9_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  19. 21299

    Image_7_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  20. 21300

    Image_10_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”