Search alternatives:
point decrease » point increase (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
point decrease » point increase (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
26801
-
26802
-
26803
-
26804
-
26805
-
26806
-
26807
-
26808
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
26809
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
26810
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
26811
Understanding the Effect of Platinum Particle Size on Ethane Dehydrogenation and Hydrogenolysis: Particle-Based Microkinetic Modeling at Finite Conversion
Published 2025“…The effect of platinum particle size on the kinetics and mechanism of ethane dehydrogenation (EDH) and hydrogenolysis (EH) is elucidated using first-principles and multiscale modeling. A particle-based microkinetic modeling (PB-MKM) approach is used to couple the MKMs for individual facets, i.e., Pt(111), Pt(100), and Pt(211), into a variable-size Pt nanoparticle catalyst model. …”
-
26812
-
26813
-
26814
-
26815
-
26816
-
26817
-
26818
-
26819
-
26820