Showing 17,101 - 17,120 results of 105,386 for search '(( 5 ((a decrease) OR (mean decrease)) ) OR ( e ((fold decrease) OR (point decrease)) ))', query time: 1.83s Refine Results
  1. 17101

    Image_7_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  2. 17102

    Image_6_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  3. 17103

    Image_1_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  4. 17104

    Image_3_Intracellular Staphylococcus aureus Infection Decreases Milk Protein Synthesis by Preventing Amino Acid Uptake in Bovine Mammary Epithelial Cells.tif by Yuhao Chen (1406335)

    Published 2021
    “…Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.…”
  5. 17105
  6. 17106
  7. 17107
  8. 17108
  9. 17109
  10. 17110
  11. 17111
  12. 17112

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
  13. 17113

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
  14. 17114

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
  15. 17115

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
  16. 17116

    Cobalt-Catalyzed C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands by L. Reginald Mills (4356334)

    Published 2022
    “…The protocol enabled efficient C–C bond formation with a host of nucleophiles and electrophiles (36 examples, 34–95%) with precatalyst loadings of 5 mol %. …”
  17. 17117
  18. 17118

    Rotational diffusion and shifts in FRET transfer efficiency <i>E</i>. by Bram Wallace (4036730)

    Published 2017
    “…<p>As the rotational diffusion decreases the mean transfer efficiency shifts significantly. …”
  19. 17119
  20. 17120