Showing 1,381 - 1,400 results of 102,363 for search '(( 5 ((c decrease) OR (a decrease)) ) OR ( 5 ((nm decrease) OR (we decrease)) ))', query time: 1.87s Refine Results
  1. 1381
  2. 1382
  3. 1383

    Overexpression of FTH1P3 decreased the miR-224-5p expression. by Xiaoli Zheng (232806)

    Published 2017
    “…<p>(A) Elevated expression of FTH1P3 decreased the miR-224-5p expression in the MUM-2B cell. …”
  4. 1384
  5. 1385
  6. 1386
  7. 1387
  8. 1388
  9. 1389
  10. 1390
  11. 1391
  12. 1392
  13. 1393
  14. 1394
  15. 1395

    DNA methylation of RALBP1 is associated with a decrease in gene expression. by Tina Rönn (253292)

    Published 2013
    “…<p>A CpG site in the promoter region of <i>RALBP1</i> showed A) increased DNA methylation in response to exercise as well as B) a decrease in mRNA expression. …”
  16. 1396

    SMNΔ7 NMJs display a decrease in synaptic efficacy. by Karen K. Y. Ling (237660)

    Published 2010
    “…There is an increase in MEPP amplitude, a decrease in MEPP frequency and a reduction in quantal content in SMNΔ7 mice (n = 100–130 NMJs from 7 control and 10 SMNΔ7 mice; ***<i>p</i><0.0001, ** <i>p</i> = 0.007). …”
  17. 1397

    Length-Dependent Convergence and Saturation Behavior of Electrochemical, Linear Optical, Quadratic Nonlinear Optical, and Cubic Nonlinear Optical Properties of Dipolar Alkynylruthe... by Bandar Babgi (2360545)

    Published 2009
    “…The syntheses of <i>trans</i>-[Ru{4,4′-CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>}Cl(dppm)<sub>2</sub>] (<b>19</b>), <i>trans</i>-[Ru{4,4′,4′′-CCC<sub>6</sub>H<sub>4</sub>CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>}Cl(dppm)<sub>2</sub>] (<b>20</b>), <i>trans</i>-[Ru{4,4′,4′′,4′′′-CCC<sub>6</sub>H<sub>4</sub>CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>}Cl(dppe)<sub>2</sub>] (<b>21</b>), <i>trans</i>-[Ru{4,4′,4′′,4′′′-CCC<sub>6</sub>H<sub>4</sub>CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>}Cl(dppm)<sub>2</sub>] (<b>22</b>), <i>trans</i>-[Ru{4,4′,4′′,4′′′-CCC<sub>6</sub>H<sub>4</sub>CCC<sub>6</sub>H<sub>4</sub>CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>}Cl(dppm)<sub>2</sub>] (<b>23</b>), and <i>trans</i>-[Ru{4,4′,4′′,4′′′,4′′′′-CCC<sub>6</sub>H<sub>4</sub>CCC<sub>6</sub>H<sub>4</sub>CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>2</sub>[2,5-(OEt)<sub>2</sub>]CCC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>}Cl(dppm)<sub>2</sub>] (<b>24</b>) are reported, together with those of precursor alkynes, complexes with the donor−π-bridge−acceptor formulation that affords efficient quadratic and cubic NLO compounds; the identity of <b>19</b> was confirmed by a structural study. …”
  18. 1398
  19. 1399
  20. 1400