Showing 1,741 - 1,760 results of 31,986 for search '(( 5 ((fold decrease) OR (point decrease)) ) OR ( 100 ((nn decrease) OR (a decrease)) ))', query time: 1.06s Refine Results
  1. 1741

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  2. 1742

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  3. 1743

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  4. 1744

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  5. 1745

    Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model by Huaan Li (6812009)

    Published 2019
    “…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. …”
  6. 1746

    MicroRNA-138 Regulates Hypoxia-Induced Endothelial Cell Dysfunction By Targeting S100A1 by Anagha Sen (482673)

    Published 2013
    “…Bioinformatic analysis suggested that microRNA -138 (MiR-138) could target the 3′UTR of S100A1. Patients with critical limb ischemia (CLI) or mice subjected to femoral artery resection (FAR) displayed increased MiR-138 levels and decreased S100A1 protein expression. …”
  7. 1747

    Purified recombinant WT-C100Flag dimer and trimer showed reduced Aβ production. by Joo In Jung (650746)

    Published 2014
    “…<p>(A) The purified recombinant WT-C100Flag monomer, dimer, and trimer eluates were loaded on a SDS-PAGE gel. …”
  8. 1748
  9. 1749

    GluN2A(D731N) reduces the agonist potency. by Kai Gao (120150)

    Published 2017
    “…(<b>C,E</b>) The composite glutamate (in the presence of 100 μM glycine) concentration-response curves reveal a significant decrease in glutamate potency in both di-heteromeric (<b>C</b>) and tri-heteromeric (<b>E</b>) GluN2A(D731N)-containing NMDARs compared to wild type receptors. …”
  10. 1750
  11. 1751
  12. 1752
  13. 1753

    Table_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  14. 1754

    Image_4_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  15. 1755

    Table_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  16. 1756

    Image_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  17. 1757

    Image_3_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  18. 1758

    Image_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  19. 1759

    Table 1_SARS-CoV-2 testing strategies for a safe (post-)pandemic implementation of school music trips and their impact on participants’ health.docx by Linus Fritz Felix Möckel (21014891)

    Published 2025
    “…For T<sub>2</sub>, prior point-of-care (PoC) PCR pool tests were conducted to validate the findings. …”
  20. 1760