Showing 17,281 - 17,300 results of 32,095 for search '(( 5 ((fold decrease) OR (point decrease)) ) OR ( 100 ((we decrease) OR (a decrease)) ))', query time: 1.07s Refine Results
  1. 17281

    Table_2_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  2. 17282

    Table_9_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  3. 17283

    Table_11_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  4. 17284

    Table_7_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  5. 17285

    Table_4_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  6. 17286

    Table_1_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.docx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  7. 17287

    Table_10_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xls by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  8. 17288

    Table_8_Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH4+/NO3– Ratio Induced Root Lignification and Reduced Nitrogen Utilization.xlsx by Dongqing Yang (675454)

    Published 2022
    “…However, the mechanisms underlying the response of wheat seedling roots to changes in NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH<sub>4</sub><sup>+</sup>/NO<sub>3</sub><sup>–</sup> ratios (N<sub>a</sub>: 100/0; N<sub>r1</sub>: 75/25, N<sub>r2</sub>: 50/50, N<sub>r3</sub>: 25/75, and N<sub>n</sub>: 0/100). …”
  9. 17289

    Possible Increase in Serum FABP4 Level Despite Adiposity Reduction by Canagliflozin, an SGLT2 Inhibitor by Masato Furuhashi (85555)

    Published 2016
    “…Treatment with canagliflozin significantly decreased adiposity and levels of fasting glucose and HbA1c but increased average serum FABP4 level by 10.3% (18.0 ± 1.0 vs. 19.8 ± 1.2 ng/ml, P = 0.008), though elevation of FABP4 level after treatment was observed in 26 (66.7%) out of 39 patients. …”
  10. 17290

    <i>ACVR2</i> promoter hypermethylation and LOH in colon cancer specimens and the MSS HT29 cell line and correlation of <i>ACVR2</i> promoter hypermethylation and loss of <i>ACVR2</... by Barbara Jung (155690)

    Published 2009
    “…<p>A) ACVR2 promoter with map of positioning of MSP primers B) Using a CpG islands search program, we identified the CpG islands within the <i>ACVR2</i> promoter based upon following stringent criteria: ∼CG percentage>55%; observed CpG/expected CpG >0.65; length >500 bp. …”
  11. 17291

    Supplementary Material for: The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in... by Reuther C. (3593810)

    Published 2016
    “…The small molecule NVP-CGM097 is a novel MDM2 inhibitor. We investigated MDM2 inhibition as a target in neuroendocrine tumor cells in vitro. …”
  12. 17292

    Beta power timecourses time-locked to the response (button press at time zero), expressed as percent change from baseline in the SMOT areas. by Lauren E. Beaton (4763232)

    Published 2018
    “…After the switch and immediately preceding the response (highlighted in dark blue color), the primed hemisphere rebounds back to baseline while the responding hemisphere continues to decrease. In the right panel, lateralized beta power is presented in the bar graphs as a subtraction of beta power in the contralateral—ipsilateral SMOT in the early (-300 to -200 ms) vs late (-100 to 0 ms) time windows.…”
  13. 17293

    Table 1_Trends in the disease burden of maternal sepsis and other maternal infections attributable to iron deficiency from 1990 to 2021 and its projection until 2050.docx by Chunfeng Zhu (327990)

    Published 2025
    “…The ASMR and age-standardized DALY rate of MSMIs attributable to iron deficiency were negatively correlated with SDI. Projections indicated a continued decrease in the burden of MSMIs attributable to iron deficiency by 2050.…”
  14. 17294

    Bcgbl1 globally regulates expression of hydrophobic surface-induced genes. by Jiejing Tang (17549959)

    Published 2023
    “…On the basis of the comparison of fold change values between WT and Δ<i>Bcgbl1</i>-30 (fold change values of gene expression level in hyphae on the hydrophobic surface relative to hyphae in PDA cultures), Bcgbl1-dependent genes were identified when the rate of fold change increase or decrease in the Δ<i>Bcgbl1</i>-30 mutant was less than 50% that in WT, the remaining genes were identified as Bcgbl1-independent. …”
  15. 17295

    <i>APTR</i> suppresses <i>p21</i> transcription. by Masamitsu Negishi (243233)

    Published 2014
    “…Note that cells were transfected on Day 1, so Day 2 is 1 day after transfection and Day 6 is 5 days after transfection. Thus si-<i>APTR</i> does not decrease <i>APTR</i> on day 1 after transfection, but the <i>APTR</i> RNA remains low up to day 5. …”
  16. 17296

    Metabolome and Proteome Profiling of Complex I Deficiency Induced by Rotenone by Ina Gielisch (1348827)

    Published 2015
    “…We report a rapid LC–MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. …”
  17. 17297

    Metabolome and Proteome Profiling of Complex I Deficiency Induced by Rotenone by Ina Gielisch (1348827)

    Published 2015
    “…We report a rapid LC–MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. …”
  18. 17298

    Metabolome and Proteome Profiling of Complex I Deficiency Induced by Rotenone by Ina Gielisch (1348827)

    Published 2015
    “…We report a rapid LC–MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. …”
  19. 17299

    Metabolome and Proteome Profiling of Complex I Deficiency Induced by Rotenone by Ina Gielisch (1348827)

    Published 2015
    “…We report a rapid LC–MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. …”
  20. 17300

    Metabolome and Proteome Profiling of Complex I Deficiency Induced by Rotenone by Ina Gielisch (1348827)

    Published 2015
    “…We report a rapid LC–MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. …”