Search alternatives:
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
15881
-
15882
Structure diagram of ensemble model.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15883
Fitting formula parameter table.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15884
Test plan.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15885
Fitting surface parameters.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15886
Model generalisation validation error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15887
Empirical model prediction error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15888
Fitting curve parameters.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15889
Test instrument.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15890
Empirical model establishment process.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15891
Model prediction error trend chart.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15892
Basic physical parameters of red clay.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15893
BP neural network structure diagram.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15894
Structure diagram of GBDT model.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15895
Model prediction error analysis index.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15896
Fitting curve parameter table.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15897
Model prediction error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
15898
Synthesis, Structure, and Dynamic Behavior of Cyclopentadienyl-Lithium, -Sodium, and -Potassium Annelated with Bicyclo[2.2.2]octene Units: A Systematic Study on Site Exchange of A...
Published 2003“…Within this range, a tendency was observed for the Δ<i>G</i><sup>⧧</sup> values to increase as the size of the metal decreased. Theoretical calculations (B3LYP/6-31G(d)) afforded considerably large values as the gas-phase dissociation energy for <b>1</b>−M (162.7 kcal mol<sup>-1</sup> for M = Li; 131.6 kcal mol<sup>-1</sup> for M = Na; 110.9 kcal mol<sup>-1</sup> for M = K) and for <b>2</b>−M (170.0 kcal mol<sup>-1</sup> for M = Li; 137.5 kcal mol<sup>-1</sup> for M = Na; 115.4 kcal mol<sup>-1</sup> for M = K). …”
-
15899
Synthesis, Structure, and Dynamic Behavior of Cyclopentadienyl-Lithium, -Sodium, and -Potassium Annelated with Bicyclo[2.2.2]octene Units: A Systematic Study on Site Exchange of A...
Published 2003“…Within this range, a tendency was observed for the Δ<i>G</i><sup>⧧</sup> values to increase as the size of the metal decreased. Theoretical calculations (B3LYP/6-31G(d)) afforded considerably large values as the gas-phase dissociation energy for <b>1</b>−M (162.7 kcal mol<sup>-1</sup> for M = Li; 131.6 kcal mol<sup>-1</sup> for M = Na; 110.9 kcal mol<sup>-1</sup> for M = K) and for <b>2</b>−M (170.0 kcal mol<sup>-1</sup> for M = Li; 137.5 kcal mol<sup>-1</sup> for M = Na; 115.4 kcal mol<sup>-1</sup> for M = K). …”
-
15900
Synthesis, Structure, and Dynamic Behavior of Cyclopentadienyl-Lithium, -Sodium, and -Potassium Annelated with Bicyclo[2.2.2]octene Units: A Systematic Study on Site Exchange of A...
Published 2003“…Within this range, a tendency was observed for the Δ<i>G</i><sup>⧧</sup> values to increase as the size of the metal decreased. Theoretical calculations (B3LYP/6-31G(d)) afforded considerably large values as the gas-phase dissociation energy for <b>1</b>−M (162.7 kcal mol<sup>-1</sup> for M = Li; 131.6 kcal mol<sup>-1</sup> for M = Na; 110.9 kcal mol<sup>-1</sup> for M = K) and for <b>2</b>−M (170.0 kcal mol<sup>-1</sup> for M = Li; 137.5 kcal mol<sup>-1</sup> for M = Na; 115.4 kcal mol<sup>-1</sup> for M = K). …”