Showing 761 - 780 results of 42,638 for search '(( 5 ((mean decrease) OR (point decrease)) ) OR ( 100 ((nn decrease) OR (a decrease)) ))', query time: 1.08s Refine Results
  1. 761
  2. 762

    ALS Variants of Annexin A11’s Proline-Rich Domain Impair Its S100A6-Mediated Fibril Dissolution by Aman Shihora (16529668)

    Published 2023
    “…These findings indicate a slower fibril-to-monomer exchange for these ALS variants, resulting in a decreased level of S100A6-mediated fibril dissolution. …”
  3. 763
  4. 764
  5. 765

    A Yoga Strengthening Program Designed to Minimize the Knee Adduction Moment for Women with Knee Osteoarthritis: A Proof-Of-Principle Cohort Study by Elora C. Brenneman (795723)

    Published 2015
    “…A secondary objective was to determine whether the program could improve mobility and fitness, and decrease peak KAM during gait. …”
  6. 766
  7. 767

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  8. 768

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  9. 769

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  10. 770

    Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals by Matthew A. Marcus (115744)

    Published 2017
    “…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
  11. 771
  12. 772
  13. 773
  14. 774
  15. 775

    Structure of YOLOv5s-SBC. by Zhongjian Xie (4633099)

    Published 2024
    “…Compared to the original model, P-YOLOv5s-GRNF decreased parameters by 18%, decreased model size to 11.9MB, decreased FLOPs to 14.5G, and increased FPS by 4.3. …”
  16. 776
  17. 777
  18. 778
  19. 779
  20. 780