Showing 12,221 - 12,240 results of 104,144 for search '(( 5 ((ng decrease) OR (a decrease)) ) OR ( 50 ((we decrease) OR (nn decrease)) ))', query time: 1.65s Refine Results
  1. 12221
  2. 12222

    KAIST low-speed wind tunnel and its components. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  3. 12223

    Scattering efficiency by particle diameter. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  4. 12224

    Relative transmission rate by wavelength. by Elliott Donghyun Kim (19469973)

    Published 2024
    “…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
  5. 12225

    Failure mode of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  6. 12226

    Positions of AE probes and strain gauges. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  7. 12227

    Sampling site. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  8. 12228

    Received AE waves. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  9. 12229

    Test schemes for soft rocks. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  10. 12230

    Failure mode of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  11. 12231

    S1 Table - by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  12. 12232

    AE monitoring system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  13. 12233

    MTS-370.25 fatigue resting system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  14. 12234

    Schematic diagram of the AE testing system. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  15. 12235

    Strain at different positions of the sample. by Zhenhua Wang (426041)

    Published 2025
    “…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
  16. 12236
  17. 12237
  18. 12238
  19. 12239
  20. 12240