Showing 2,001 - 2,020 results of 21,278 for search '(( 5 ((ng decrease) OR (nn decrease)) ) OR ( 100 ((mean decrease) OR (a decrease)) ))', query time: 1.04s Refine Results
  1. 2001

    Purified recombinant WT-C100Flag dimer and trimer showed reduced Aβ production. by Joo In Jung (650746)

    Published 2014
    “…<p>(A) The purified recombinant WT-C100Flag monomer, dimer, and trimer eluates were loaded on a SDS-PAGE gel. …”
  2. 2002

    GluN2A(D731N) reduces the agonist potency. by Kai Gao (120150)

    Published 2017
    “…(<b>C,E</b>) The composite glutamate (in the presence of 100 μM glycine) concentration-response curves reveal a significant decrease in glutamate potency in both di-heteromeric (<b>C</b>) and tri-heteromeric (<b>E</b>) GluN2A(D731N)-containing NMDARs compared to wild type receptors. …”
  3. 2003

    Table_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  4. 2004

    Image_4_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  5. 2005

    Table_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  6. 2006

    Image_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  7. 2007

    Image_3_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  8. 2008

    Image_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
  9. 2009

    Data_Sheet_1_Molecular Mechanisms by Which S100A4 Regulates the Migration and Invasion of PGCCs With Their Daughter Cells in Human Colorectal Cancer.zip by Fei Fei (794241)

    Published 2020
    “…The tumorigenic and metastatic ability of PGCCs with their daughter cells in vivo was significantly stronger compared to the untreated cells, which was significantly decreased after S100A4 knockdown. Moreover, the expression of S100A4-related proteins was positively correlated with the malignancy degree of human CRC, and maintained a high level in lymph node metastasis. …”
  10. 2010

    GluN2A(D731N) enhances sensitivity to endogenous proton and zinc ions. by Kai Gao (120150)

    Published 2017
    “…Di-heteromeric (h2A-D731N), one-copy and two-copy mutant tri-heteromeric (D731N/2A and D731N/D731N) receptors show a decreased current ratio, indicating enhanced proton sensitivity. …”
  11. 2011
  12. 2012
  13. 2013
  14. 2014
  15. 2015
  16. 2016
  17. 2017
  18. 2018
  19. 2019
  20. 2020