Search alternatives:
ng decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
ng decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
681
-
682
Cost-effectiveness analysis of universal varicella vaccination in Turkey using a dynamic transmission model
Published 2019“…</p><p>Results</p><p>Five years post-introduction of UVV (1D), the projected varicella incidence rate decreases from 1,674 cases pre-vaccine to 80 cases/100,000 person-years. …”
-
683
-
684
-
685
-
686
-
687
Table_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
688
Image_4_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
689
Table_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
690
Image_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
691
Image_3_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
692
Image_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
-
693
Negative Intrinsic Viscosity in Graphene Nanoparticle Suspensions Induced by Hydrodynamic Slip
Published 2025“…These simulations robustly confirm that the intrinsic viscosity decreases with increasing aspect ratio and becomes negative beyond a threshold ≈5.5, providing a molecular-level confirmation of this behavior in a realistic graphene–water system. …”
-
694
Negative Intrinsic Viscosity in Graphene Nanoparticle Suspensions Induced by Hydrodynamic Slip
Published 2025“…These simulations robustly confirm that the intrinsic viscosity decreases with increasing aspect ratio and becomes negative beyond a threshold ≈5.5, providing a molecular-level confirmation of this behavior in a realistic graphene–water system. …”
-
695
-
696
-
697
-
698
-
699
-
700