Search alternatives:
nm decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
nm decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1081
-
1082
-
1083
-
1084
-
1085
-
1086
-
1087
-
1088
-
1089
-
1090
-
1091
Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach
Published 2017“…<div><p>Maturity-onset diabetes of the young type 3 (MODY3) is a non-ketotic form of diabetes associated with poor insulin secretion. …”
-
1092
-
1093
-
1094
-
1095
-
1096
-
1097
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1098
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1099
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
-
1100
Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates
Published 2025“…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”