Search alternatives:
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
11841
-
11842
-
11843
-
11844
<i>microRNA-135a-5p</i> regulates <i>NOD-like receptor family pyrin domain containing 3</i> inflammasome-mediated hypertensive cardiac inflammation and fibrosis <i>via thioredoxin-...
Published 2022“…Moreover, over-expression of <i>miR-135a-5p</i> resulted in inhibition of inflammatory infiltration and almost eliminated cardiac fibrosis, as evidenced by decreased Collagen (COL)-I, COL-III, a-smooth muscle actin, <i>NLRP3</i>, tumor necrosis factor-α, and interleukin-6. …”
-
11845
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11846
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11847
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11848
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11849
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11850
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11851
Controlling Magnetic Ordering in Ca<sub>1–<i>x</i></sub>Eu<sub><i>x</i></sub>Co<sub>2</sub>As<sub>2</sub> by Chemical Compression
Published 2016“…Single-crystal neutron diffraction studies revealed that both Co and Eu sublattices order FM in Ca<sub>0.5</sub>Eu<sub>0.5</sub>Co<sub>2</sub>As<sub>2</sub> with the magnetic moments aligned along the tetragonal <i>c</i> axis. …”
-
11852
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11853
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11854
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11855
Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists
Published 2018“…While screening off-target effects of rigid (<i>N</i>)-methanocarba-adenosine 5′-methylamides as A<sub>3</sub> adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). …”
-
11856
DataSheet_1_Future changes in the seasonal habitat suitability for anchovy (Engraulis japonicus) in Korean waters projected by a maximum entropy model.docx
Published 2022“…In this study, we examined the projected changes in the seasonal anchovy habitat in Korean waters in the 2050s under three representative concentration pathways (RCPs; RCP 2.6, RCP 4.5, and RCP 8.5) by using a maximum entropy model (MaxEnt). …”
-
11857
-
11858
Inhibition of MRSA and MSSA biofilm growth <i>in vitro</i> with different concentrations of eugenol.
Published 2015“…<p>(A) Decreased biofilm biomass detected using the microtiter plate assay. …”
-
11859
-
11860