Showing 26,601 - 26,620 results of 103,867 for search '(( 5 ((nn decrease) OR (a decrease)) ) OR ( e ((fold decrease) OR (point decrease)) ))', query time: 1.76s Refine Results
  1. 26601

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…These alterations in PMF correspond to +146 mV (<i>Rm</i>XeR) and −140 mV (AR3), respectively. …”
  2. 26602

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…These alterations in PMF correspond to +146 mV (<i>Rm</i>XeR) and −140 mV (AR3), respectively. …”
  3. 26603

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…These alterations in PMF correspond to +146 mV (<i>Rm</i>XeR) and −140 mV (AR3), respectively. …”
  4. 26604

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…These alterations in PMF correspond to +146 mV (<i>Rm</i>XeR) and −140 mV (AR3), respectively. …”
  5. 26605
  6. 26606
  7. 26607

    The detailed risk of bias assessment. by Fatemeh Shahbazi (2271025)

    Published 2025
    “…Therefore, the existence of a dose-response relationship can indicate a causal relationship between music therapy and the improvement of neonatal outcomes.…”
  8. 26608

    Table_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx by Sheng Liu (279488)

    Published 2020
    “…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
  9. 26609

    Image_4_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
  10. 26610

    Table_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx by Sheng Liu (279488)

    Published 2020
    “…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
  11. 26611

    Image_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
  12. 26612

    Image_3_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
  13. 26613

    Image_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF by Sheng Liu (279488)

    Published 2020
    “…Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. …”
  14. 26614
  15. 26615
  16. 26616
  17. 26617
  18. 26618
  19. 26619
  20. 26620