Showing 5,101 - 5,120 results of 43,973 for search '(( 5 ((nn decrease) OR (mean decrease)) ) OR ( 50 ((we decrease) OR (a decrease)) ))', query time: 0.85s Refine Results
  1. 5101
  2. 5102
  3. 5103
  4. 5104

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  5. 5105

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  6. 5106

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  7. 5107

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  8. 5108

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  9. 5109

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  10. 5110
  11. 5111
  12. 5112
  13. 5113
  14. 5114
  15. 5115
  16. 5116
  17. 5117
  18. 5118
  19. 5119
  20. 5120

    S1 File - by Michael Gulledge (20577135)

    Published 2025
    “…During withdrawal, there was a profound loss (peaking on days 2–3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. …”