Search alternatives:
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1641
DataSheet_1_Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation.doc...
Published 2021“…S100A9 inhibition with a specific small-molecule blocker, reduced CCL2, CCL3 and CCL5 chemokine expression and decreased MPO and MMP-9 activity, by interfering with the NF-kB signaling pathway. …”
-
1642
-
1643
Regenerating axons are increased by ATRA and decreased by clodronate.
Published 2021“…(E) ATRA and clodronate liposome treatment, composite from 2 sections. Scale bar: 100 μm in A and B. (F) Bar and scatter plots of the number of axons per transverse section, sampled at approximately 200 μm distal to the cut site, showing mean ± SEM. …”
-
1644
-
1645
-
1646
-
1647
-
1648
-
1649
Recombinant 3xK-C100Flag monomer increased longer Aβ peptides.
Published 2014“…Molecular mass (m/z) of monomeric 3xK-C100Flag for Aβ40 is 4588.43 (calculated m/z: 4589.27), for Aβ42 is 4773.07 (calculated m/z: 4773.51), and for Aβ45 is 5084.52 (calculated m/z: 5086.90). 3xK-C100Flag dimer and trimer showed decreased Aβ levels compared to the monomer. …”
-
1650
MicroRNA-138 Regulates Hypoxia-Induced Endothelial Cell Dysfunction By Targeting S100A1
Published 2013“…Bioinformatic analysis suggested that microRNA -138 (MiR-138) could target the 3′UTR of S100A1. Patients with critical limb ischemia (CLI) or mice subjected to femoral artery resection (FAR) displayed increased MiR-138 levels and decreased S100A1 protein expression. …”
-
1651
Purified recombinant WT-C100Flag dimer and trimer showed reduced Aβ production.
Published 2014“…<p>(A) The purified recombinant WT-C100Flag monomer, dimer, and trimer eluates were loaded on a SDS-PAGE gel. …”
-
1652
-
1653
GluN2A(D731N) reduces the agonist potency.
Published 2017“…(<b>C,E</b>) The composite glutamate (in the presence of 100 μM glycine) concentration-response curves reveal a significant decrease in glutamate potency in both di-heteromeric (<b>C</b>) and tri-heteromeric (<b>E</b>) GluN2A(D731N)-containing NMDARs compared to wild type receptors. …”
-
1654
-
1655
-
1656
-
1657
Table_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx
Published 2020“…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
-
1658
Image_4_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
-
1659
Table_1_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.docx
Published 2020“…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”
-
1660
Image_2_PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism.TIF
Published 2020“…Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.…”