Showing 681 - 700 results of 54,247 for search '(( 5 ((nn decrease) OR (we decrease)) ) OR ( 100 ((nm decrease) OR (a decrease)) ))', query time: 0.95s Refine Results
  1. 681

    S2 File - by Alejandro Valencia (16007329)

    Published 2023
    “…Using the RAMP Hybrid method, we estimate 264,516 [95% confidence interval [CI], 223,506–307,577] premature deaths attributable to PM<sub>2.5</sub> from all sources, a ~1% overall decrease in CMAQ-estimated premature mortality compared to RAMP Hybrid, despite increases and decreases in some locations. …”
  2. 682
  3. 683
  4. 684
  5. 685
  6. 686
  7. 687
  8. 688

    Trabectedin induced apoptosis in a dose-dependent manner as measured by the Muse™ Annexin V and Dead Cell assay. by Eda Acikgoz (816259)

    Published 2015
    “…Cells were treated with 0.1, 1, 10 and 100 nM trabectedin for 48 h. After incubation time cells were collected and the phosphatydilserine externalization was evaluated using Annexin V protocol as describe. …”
  9. 689

    The ATR IR signal decreases with decreasing dilutions of cells. by Allison L. Stelling (392086)

    Published 2013
    “…<p>Shown is a box plot for serial dilutions of a glioblastoma cell suspension. …”
  10. 690

    Backbone RMSD of mutant D314N throughout a 100ns MD simulation. by Bruna Baumgarten Krebs (3153162)

    Published 2016
    “…<p>To confirm that mutant D314N stayed stable with an RMSD of 0.6nm, we carried a 100ns MD simulation. The mutant seemed to stabilize at 12ns with an RMSD of 0.5nm, but an increase is noticeable at 40ns, when the backbone RMSD achieves 0.6nm. …”
  11. 691
  12. 692
  13. 693

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  14. 694

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  15. 695

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  16. 696

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  17. 697

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  18. 698

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  19. 699

    Frailty in Old Age Is Associated with Decreased Interleukin-12/23 Production in Response to Toll-Like Receptor Ligation by Nathalie Compté (418458)

    Published 2013
    “…For this purpose, we recruited 100 subjects (aged 23–96 years) in the general population or hospitalized for chronic diseases. …”
  20. 700