Showing 581 - 600 results of 60,202 for search '(( 5 ((nn decrease) OR (we decrease)) ) OR ( 50 ((ng decrease) OR (a decrease)) ))', query time: 0.60s Refine Results
  1. 581
  2. 582
  3. 583
  4. 584
  5. 585
  6. 586
  7. 587
  8. 588
  9. 589

    Phenethyl isothiocyanate activates leptin signaling and decreases food intake by Miho Yagi (5921252)

    Published 2018
    “…Moreover, we found that PEITC causes the ligand-independent phosphorylation of Ob-Rb, JAK2, and STAT3 by inhibiting cellular PTP1B in differentiated human SH-SY5Y neuronal cells. …”
  10. 590

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  11. 591

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  12. 592

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  13. 593

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  14. 594

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  15. 595

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  16. 596

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  17. 597

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  18. 598

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  19. 599

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  20. 600

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”