Showing 21 - 40 results of 67,455 for search '(( 5 ((ppm decrease) OR (a decrease)) ) OR ((( 50 we decrease ) OR ( 100 ns decrease ))))', query time: 0.84s Refine Results
  1. 21
  2. 22
  3. 23

    Decreased Incidence of Type 1 Diabetes in Young Finnish Children by Anna Parviainen (9343391)

    Published 2020
    “…We assessed sex-specific incidence rates (IRs) per 100,000 person years (PY) by 4-year time periods in three age groups (0.50–4.99, 5.00–9.99, and 10.00–14.99 years).…”
  4. 24

    <i>Trappc9</i> deficient mice show a decrease in brain weight and size. by Zhengzheng S. Liang (9333660)

    Published 2020
    “…<p><b>(A)</b><i>Trappc9</i> deficient mice show a decrease in brain weight in a parent-of-origin manner. …”
  5. 25
  6. 26

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  7. 27

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  8. 28

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  9. 29

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  10. 30

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  11. 31

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  12. 32

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  13. 33

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  14. 34

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  15. 35

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  16. 36

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  17. 37

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  18. 38

    Does Mean Platelet Volume Decrease in the presence of Coronary Artery Fistula? by Isa Sincer (7234577)

    Published 2019
    “…Methods: 70 patients with normal coronary arteries and 50 with coronary artery fistulas were included. …”
  19. 39
  20. 40

    Evaluating the Potential of Ozone Microbubbles for Inactivation of Tulane Virus, a Human Norovirus Surrogate by Bozhong Guan (18598178)

    Published 2024
    “…After 2, 10, and 20 min postgeneration, the ozone concentration of microbubbles naturally decreased from 4 ppm to 3.2 ± 0.2, 2.26 ± 0.19, and 1.49 ± 0.23 ppm and resulted in 1.43 ± 0.44, 0.88 ± 0.5, and 0.68 ± 0.53 log<sub>10</sub> viral reductions, respectively, while the ozone concentration of aqueous ozone decreased from 4 ppm to 2.52 ± 0.07, 0.43 ± 0.05, and 0.09 ± 0.01 ppm and produced 0.8 ± 0.28, 0.29 ± 0.41, and 0.16 ± 0.21 log<sub>10</sub> reductions against Tulane virus, respectively (<i>p</i> = 0.0526), suggesting that structuring of ozone in the bubbles over the applied treatment conditions did not have a significant effect, though future study with continuous generation of ozone microbubbles is needed.…”