Showing 1,101 - 1,120 results of 99,633 for search '(( 5 ((ppm decrease) OR (a decrease)) ) OR ( 5 ((nm decrease) OR (nn decrease)) ))', query time: 1.40s Refine Results
  1. 1101
  2. 1102
  3. 1103
  4. 1104
  5. 1105
  6. 1106
  7. 1107
  8. 1108
  9. 1109
  10. 1110

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  11. 1111

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  12. 1112

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  13. 1113

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  14. 1114

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  15. 1115

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  16. 1116

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  17. 1117

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  18. 1118

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  19. 1119

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  20. 1120

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…The oxidation of EtOH by ADH<sub>OX</sub> in the presence of NAD<sup>+</sup> produced NADH, which was subsequently oxidized by diaphorase (DP) with resazurin, leading to the resorufin formation, characterized by red fluorescence (excitation at 560 nm and fluorescence at 590 nm). Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”