Showing 98,841 - 98,860 results of 101,305 for search '(( 5 ((ppm decrease) OR (a decrease)) ) OR ( 5 ((we decrease) OR (mean decrease)) ))', query time: 1.95s Refine Results
  1. 98841
  2. 98842
  3. 98843
  4. 98844

    Effects of mesenchymal stem cells (MSCs) on the inflammation and fibrosis of acute peritoneal adhesions. by Nan Wang (21935)

    Published 2012
    “…Sections were evaluated from five randomly selected fields under a magnification of ×100 by an independent pathologist. …”
  5. 98845
  6. 98846

    Fig 3 - by Elizabeth M. Adamowicz (8817989)

    Published 2020
    “…<p>Resistance-associated mutations in rifampicin-resistant evolved populations <b>A-B.</b> Lists of mutations which arose in <i>E</i>. …”
  7. 98847

    Engineering Single-Atomic Ni‑N<sub>4</sub>‑O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting by Xiaomeng Zhang (182897)

    Published 2021
    “…This state-of-the-art OEC/Ni-N<sub>4</sub>-O/BiVO<sub>4</sub> photoanode exhibits a record high photocurrent density of 6.0 mA cm<sup>–2</sup> at 1.23 V versus reversible hydrogen electrode (vs RHE), over approximately 3.97 times larger than that of BiVO<sub>4</sub>, achieving outstanding long-term photostability. …”
  8. 98848

    DataSheet1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.docx by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  9. 98849

    Presentation2_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  10. 98850

    Presentation1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  11. 98851

    DataSheet1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.docx by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  12. 98852

    DataSheet1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.docx by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  13. 98853

    Presentation2_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  14. 98854

    Presentation3_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  15. 98855

    Presentation1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  16. 98856

    Presentation1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  17. 98857

    Presentation2_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  18. 98858

    Presentation3_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  19. 98859

    Presentation3_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  20. 98860

    Table_2_Comparison of the ocular surface microbiota between thyroid-associated ophthalmopathy patients and healthy subjects.doc by Xuan Ji (1930057)

    Published 2022
    “…The average relative abundance of Bacillus and Brevundimonas increased significantly in the TAO group. Corynebacterium had a significantly decreased relative abundance (P<0.05). …”