Showing 20,181 - 20,200 results of 107,493 for search '(( 5 ((ppm decrease) OR (a decrease)) ) OR ( a ((point decrease) OR (nn decrease)) ))', query time: 1.49s Refine Results
  1. 20181
  2. 20182

    Related to Fig 2. by Mohammad Nafees Ansari (22232505)

    Published 2025
    “…(<b>H</b>–<b>J</b>) Absolute quantification (mean ± SEM, <i>n</i> = 3–5) of GM3 (H), GD3 (I), and GM2 (J) gangliosides shows a decrease in GM3 and GD3 gangliosides in BT-474_RICTOR<sup>SH</sup> cells compared to BT-474 cells. …”
  3. 20183

    POSTEROLATERAL, POSTERIOR AND MI-TRANSFORAMINAL LUMBAR INTERBODY FUSION: A STUDY OF 212 CASES by BRUNO MIGUEL BRÍGIDO MAIA (5139194)

    Published 2018
    “…<div><p>ABSTRACT Objective: Degenerative disc disease is a common problem that could require surgical treatment. …”
  4. 20184

    Understanding the factors that influence stroke survivors to begin or resume exercise: a qualitative exploration by Helena Drummond (17871887)

    Published 2024
    “…Stroke survivors have previously expressed a lack of adequate knowledge and skills to engage in exercise.…”
  5. 20185
  6. 20186

    Molecular Wires using (Oligo)pyrroles as Connecting Units: An Electron Transfer Study by Ulrike Pfaff (1580383)

    Published 2016
    “…The cyclic voltammetry data reveal that the splitting of the ferrocene-based redox couples, Δ<i>E</i>°′, decreases with increasing oligopyrrole chain length and, hence, a greater metal–metal distance. …”
  7. 20187

    Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYS<sub>2(1–<i>x</i>)</sub>Te<sub>2<i>x</i></sub> Alloys by Lahcene Azzouz (6893750)

    Published 2019
    “…Increasing Te content decreases the band gap (<i>E</i><sub>g</sub>) considerably (from 3.96 (<i>x</i> = 0) to 1.62 eV (<i>x</i> = 0.67)) and fits a quadratic model (<i>E</i><sub>g</sub>(<i>x</i>) = 3.96–6.78<i>x</i> + 4.70<i>x</i><sup>2</sup>, (<i>r</i><sup>2</sup> = 0.96, <i>n</i> = 4)). …”
  8. 20188

    Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYS<sub>2(1–<i>x</i>)</sub>Te<sub>2<i>x</i></sub> Alloys by Lahcene Azzouz (6893750)

    Published 2019
    “…Increasing Te content decreases the band gap (<i>E</i><sub>g</sub>) considerably (from 3.96 (<i>x</i> = 0) to 1.62 eV (<i>x</i> = 0.67)) and fits a quadratic model (<i>E</i><sub>g</sub>(<i>x</i>) = 3.96–6.78<i>x</i> + 4.70<i>x</i><sup>2</sup>, (<i>r</i><sup>2</sup> = 0.96, <i>n</i> = 4)). …”
  9. 20189

    Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYS<sub>2(1–<i>x</i>)</sub>Te<sub>2<i>x</i></sub> Alloys by Lahcene Azzouz (6893750)

    Published 2019
    “…Increasing Te content decreases the band gap (<i>E</i><sub>g</sub>) considerably (from 3.96 (<i>x</i> = 0) to 1.62 eV (<i>x</i> = 0.67)) and fits a quadratic model (<i>E</i><sub>g</sub>(<i>x</i>) = 3.96–6.78<i>x</i> + 4.70<i>x</i><sup>2</sup>, (<i>r</i><sup>2</sup> = 0.96, <i>n</i> = 4)). …”
  10. 20190

    Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYS<sub>2(1–<i>x</i>)</sub>Te<sub>2<i>x</i></sub> Alloys by Lahcene Azzouz (6893750)

    Published 2019
    “…Increasing Te content decreases the band gap (<i>E</i><sub>g</sub>) considerably (from 3.96 (<i>x</i> = 0) to 1.62 eV (<i>x</i> = 0.67)) and fits a quadratic model (<i>E</i><sub>g</sub>(<i>x</i>) = 3.96–6.78<i>x</i> + 4.70<i>x</i><sup>2</sup>, (<i>r</i><sup>2</sup> = 0.96, <i>n</i> = 4)). …”
  11. 20191

    Mutations in <i>mia40a</i> trigger respiration defects and a metabolic shift. by Anna M. Sokol (5992973)

    Published 2018
    “…Error bars correspond to SEM; <i>P</i> < 0.05 (*) by Mann-Whitney test; n: number of analysed individuals. At 5 dpf, the <i>mia40a</i> mutants show a glycolytic phenotype marked by a decreased level of glucose (B) and an increase in lactate (C). …”
  12. 20192

    Flow chart of study participants. by Eva Rydahl (6260771)

    Published 2025
    “…The rate of Apgar Score <7/ 5 minutes levelled off after a rising trend (p = 0.009). …”
  13. 20193

    Absolute numbers among CS groups. by Eva Rydahl (6260771)

    Published 2025
    “…The rate of Apgar Score <7/ 5 minutes levelled off after a rising trend (p = 0.009). …”
  14. 20194

    RICTOR silencing inhibits cell proliferation via UGCG regulation. by Mohammad Nafees Ansari (22232505)

    Published 2025
    “…(<b>F</b>) Fold change (mean ± SEM, <i>n</i> = 5) in different sphingolipid species reveals an increase in ceramides and a decrease in glucosylceramides in MCF-7_RICTOR<sup>SH</sup> cells compared to MCF-7 cells. …”
  15. 20195

    Western blot analyses for p57, CDK5 and TRPC6. by Peter V. Hauser (252431)

    Published 2010
    “…<p>In cultured immortalized mouse podocytes transfected with <i>shamporter</i> + siRNA directed against p57 (<b>A</b>) or CDK5 (<b>B</b>), there was a progressive decrease in protein levels at 48 h and 72 hours. …”
  16. 20196

    Solar-Driven Harvesting of Freshwater and Electricity Based on Three-Dimensional Hierarchical Cu<sub>2–<i>x</i></sub>O@Cu Foam by Haoyu Wang (429641)

    Published 2024
    “…For deionized water, the evaporation rate is as high as 3.03 kg m<sup>–2</sup> h<sup>–1</sup>; meanwhile, the output voltage is 0.37 V under 1 solar irradiation. For real seawater, the evaporation rate decreases to about 2.48 kg m<sup>–2</sup> h<sup>–1</sup>, the output voltage increases to 0.41 V, and the maximum output power density is 9.47 μW cm<sup>–2</sup>. …”
  17. 20197

    Solar-Driven Harvesting of Freshwater and Electricity Based on Three-Dimensional Hierarchical Cu<sub>2–<i>x</i></sub>O@Cu Foam by Haoyu Wang (429641)

    Published 2024
    “…For deionized water, the evaporation rate is as high as 3.03 kg m<sup>–2</sup> h<sup>–1</sup>; meanwhile, the output voltage is 0.37 V under 1 solar irradiation. For real seawater, the evaporation rate decreases to about 2.48 kg m<sup>–2</sup> h<sup>–1</sup>, the output voltage increases to 0.41 V, and the maximum output power density is 9.47 μW cm<sup>–2</sup>. …”
  18. 20198

    Representation and kinetics of conservative oscillators based on motif 2 and motif 5. by Kristian Thorsen (631743)

    Published 2014
    “…(c) , , and frequency as a function of the perturbation . While the frequency increases and decreases with increasing , is kept at its set-point . …”
  19. 20199

    2,7-Fluorenediyl-Bridged Complexes Containing Electroactive “Fe(η<sup>5</sup>‑C<sub>5</sub>Me<sub>5</sub>)(κ<sup>2</sup>‑dppe)CC–” End Groups: Molecular Wires and Remarkable Nonli... by Floriane Malvolti (1478311)

    Published 2015
    “…The 2,7-fluorenyl-bridged Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(2,7-C<sub>13</sub>H<sub>6</sub>Bu<sub>2</sub>)­CC]­Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe) (<b>1a</b>), its extended analogue Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(1,4-C<sub>6</sub>H<sub>4</sub>)­CC­(2,7-C<sub>13</sub>H<sub>6</sub>Bu<sub>2</sub>)­CC­(1,4-C<sub>6</sub>H<sub>4</sub>)­CC]­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)Fe (<b>1b</b>), and the corresponding mononuclear complexes Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(2-C<sub>13</sub>H<sub>7</sub>Bu<sub>2</sub>)] (<b>2a</b>) and Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(1,4-C<sub>6</sub>H<sub>4</sub>)­CC­(2-C<sub>13</sub>H<sub>7</sub>Bu<sub>2</sub>)] (<b>2b</b>), which model half of these molecules, have been synthesized and characterized in their various redox states. …”
  20. 20200

    2,7-Fluorenediyl-Bridged Complexes Containing Electroactive “Fe(η<sup>5</sup>‑C<sub>5</sub>Me<sub>5</sub>)(κ<sup>2</sup>‑dppe)CC–” End Groups: Molecular Wires and Remarkable Nonli... by Floriane Malvolti (1478311)

    Published 2015
    “…The 2,7-fluorenyl-bridged Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(2,7-C<sub>13</sub>H<sub>6</sub>Bu<sub>2</sub>)­CC]­Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe) (<b>1a</b>), its extended analogue Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(1,4-C<sub>6</sub>H<sub>4</sub>)­CC­(2,7-C<sub>13</sub>H<sub>6</sub>Bu<sub>2</sub>)­CC­(1,4-C<sub>6</sub>H<sub>4</sub>)­CC]­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)Fe (<b>1b</b>), and the corresponding mononuclear complexes Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(2-C<sub>13</sub>H<sub>7</sub>Bu<sub>2</sub>)] (<b>2a</b>) and Fe­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(κ<sup>2</sup>-dppe)­[CC­(1,4-C<sub>6</sub>H<sub>4</sub>)­CC­(2-C<sub>13</sub>H<sub>7</sub>Bu<sub>2</sub>)] (<b>2b</b>), which model half of these molecules, have been synthesized and characterized in their various redox states. …”