Showing 2,701 - 2,720 results of 46,043 for search '(( 5 ((step decrease) OR (mean decrease)) ) OR ( 50 ((nn decrease) OR (a decrease)) ))', query time: 0.74s Refine Results
  1. 2701
  2. 2702
  3. 2703
  4. 2704
  5. 2705

    Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration-6 by Sergio Liarte (75701)

    Published 2011
    “…<p><b>Copyright information:</b></p><p>Taken from "Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration"</p><p>http://www.rbej.com/content/5/1/20</p><p>Reproductive Biology and Endocrinology 2007;5():20-20.…”
  6. 2706

    Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration-0 by Sergio Liarte (75701)

    Published 2011
    “…<p><b>Copyright information:</b></p><p>Taken from "Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration"</p><p>http://www.rbej.com/content/5/1/20</p><p>Reproductive Biology and Endocrinology 2007;5():20-20.…”
  7. 2707

    Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration-2 by Sergio Liarte (75701)

    Published 2011
    “…<p><b>Copyright information:</b></p><p>Taken from "Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration"</p><p>http://www.rbej.com/content/5/1/20</p><p>Reproductive Biology and Endocrinology 2007;5():20-20.…”
  8. 2708
  9. 2709
  10. 2710
  11. 2711
  12. 2712

    A-p50 affects tumor cell survival through inhibition of NF-κB-mediated transcriptional activation by Jing Mi (18654)

    Published 2011
    “…</p><p>© 2006 The Author(s)</p> () MTT assay of cell viability. Ad-A-p50-infected A549 cells show a significant decrease in cell viability (Ad-A-p50) compared to Ad-siNT-infected cells, = 3–5 per group, = 0.0001. () Hoechst 33342 staining of apoptotic nuclei. …”
  13. 2713
  14. 2714

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  15. 2715

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  16. 2716

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  17. 2717

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  18. 2718

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  19. 2719

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”
  20. 2720

    From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer by Justin M. Hoffman (6890504)

    Published 2019
    “…The RP structures show a blue-shift in bandgap for decreasing <i>n</i> (1.90 eV for <i>n</i> = 4 and 2.03 eV for <i>n</i> = 3), while the SL structures have an even greater blue-shift (2.53 eV for <i>m</i> = 4, 2.74 eV for <i>m</i> = 3, and 2.93 eV for <i>m</i> = 2). …”