Search alternatives:
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
step decrease » sizes decrease (Expand Search), we decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
16781
-
16782
-
16783
Structure diagram of ensemble model.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16784
Fitting formula parameter table.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16785
Test plan.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16786
Fitting surface parameters.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16787
Model generalisation validation error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16788
Empirical model prediction error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16789
Fitting curve parameters.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16790
Test instrument.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16791
Empirical model establishment process.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16792
Model prediction error trend chart.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16793
Basic physical parameters of red clay.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16794
BP neural network structure diagram.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16795
Structure diagram of GBDT model.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16796
Model prediction error analysis index.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16797
Fitting curve parameter table.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16798
Model prediction error analysis.
Published 2024“…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
-
16799
Synthesis, Structure, and Dynamic Behavior of Cyclopentadienyl-Lithium, -Sodium, and -Potassium Annelated with Bicyclo[2.2.2]octene Units: A Systematic Study on Site Exchange of A...
Published 2003“…Within this range, a tendency was observed for the Δ<i>G</i><sup>⧧</sup> values to increase as the size of the metal decreased. Theoretical calculations (B3LYP/6-31G(d)) afforded considerably large values as the gas-phase dissociation energy for <b>1</b>−M (162.7 kcal mol<sup>-1</sup> for M = Li; 131.6 kcal mol<sup>-1</sup> for M = Na; 110.9 kcal mol<sup>-1</sup> for M = K) and for <b>2</b>−M (170.0 kcal mol<sup>-1</sup> for M = Li; 137.5 kcal mol<sup>-1</sup> for M = Na; 115.4 kcal mol<sup>-1</sup> for M = K). …”
-
16800
Synthesis, Structure, and Dynamic Behavior of Cyclopentadienyl-Lithium, -Sodium, and -Potassium Annelated with Bicyclo[2.2.2]octene Units: A Systematic Study on Site Exchange of A...
Published 2003“…Within this range, a tendency was observed for the Δ<i>G</i><sup>⧧</sup> values to increase as the size of the metal decreased. Theoretical calculations (B3LYP/6-31G(d)) afforded considerably large values as the gas-phase dissociation energy for <b>1</b>−M (162.7 kcal mol<sup>-1</sup> for M = Li; 131.6 kcal mol<sup>-1</sup> for M = Na; 110.9 kcal mol<sup>-1</sup> for M = K) and for <b>2</b>−M (170.0 kcal mol<sup>-1</sup> for M = Li; 137.5 kcal mol<sup>-1</sup> for M = Na; 115.4 kcal mol<sup>-1</sup> for M = K). …”