Showing 17,921 - 17,940 results of 29,668 for search '(( 5 ((step decrease) OR (nn decrease)) ) OR ( 50 ((we decrease) OR (a decrease)) ))', query time: 1.18s Refine Results
  1. 17921

    Quantification of Cre recombinase efficiency. by Rosa-Eva Huettl (113537)

    Published 2011
    “…Quantification (J) shows a 2-fold decrease in the numbers of <i>Npn-1</i> expressing sensory neurons (positive for Isl-1) in mutant embryos to 10.4%±0.8% at brachial and 13.5%±0.4% at lumbar levels (<i>n</i> = 3, <i>p</i><sup>brachial</sup><0.005; <i>p</i><sup>lumbar</sup><0.0005). …”
  2. 17922

    Table_1_Sodium-Related Adaptations to Drought: New Insights From the Xerophyte Plant Zygophyllum xanthoxylum.DOCX by Jie-Jun Xi (5989541)

    Published 2018
    “…The results of this study demonstrate that Z. xanthoxylum has evolved a notable ability to utilize Na<sup>+</sup> ions to lower Ψ<sub>s</sub>, swell its leaves, and decrease stomatal aperture sizes, in order to enable the additional uptake and storage of water and mitigate losses. …”
  3. 17923

    Data_Sheet_1_Cerebrovascular Reactivity Assays Collateral Function in Carotid Stenosis.docx by Olivia Sobczyk (5412599)

    Published 2020
    “…Ipsilateral MCA territory CVR was less than normal in each class, including that with <50% stenosis (Student t-test, two-tailed; p = 0.0014 for GM and p = 0.030 for WM), with a trend of decreasing average CVR with increasing stenosis. …”
  4. 17924

    Image_4_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.PNG by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  5. 17925

    Image_3_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.PNG by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  6. 17926

    Table_1_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.pdf by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  7. 17927

    Image_7_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.PNG by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  8. 17928

    Image_1_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.PNG by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  9. 17929

    Image_2_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.PNG by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  10. 17930

    Audio_3_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.WAV by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  11. 17931

    Image_6_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.PNG by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  12. 17932

    Audio_1_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.WAV by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  13. 17933

    Audio_2_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.WAV by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  14. 17934

    Video_1_Underwater Acoustic Ecology Metrics in an Alaska Marine Protected Area Reveal Marine Mammal Communication Masking and Management Alternatives.WMV by Christine M. Gabriele (3297708)

    Published 2018
    “…RA was approximated from the quietest 5th percentile noise statistics based on a year (2011) of continuous audio data from a hydrophone in GBNP, in the frequency bands of whale and seal sounds of interest: humpback “whup” calls (50–700 Hz, 143 dB re 1 μPa source level, SL); humpback song (224–708 Hz, 175 dB SL), and harbor seal roars (4–500 Hz, 144 dB SL). …”
  15. 17935

    Distribution of Small RNA-Generating Loci from Each Chromosome by Kristin D Kasschau (2735)

    Published 2013
    “…<div><p>(A) Scrolling-window analysis (50,000-nt window and 10,000-nt scroll) of small RNA loci. …”
  16. 17936

    Inhibition of EGFR-Grb2 interaction by the small tyrosine kinase inhibitor AG1478. by Peter Lanzerstorfer (540769)

    Published 2014
    “…(B) Time course of the Grb2 contrast change upon EGF stimulation in control and AG1478 pretreated (1, 10 μM) cells (n = 50). Pretreatment with a tyrosine kinase inhibitor leads to a decreased contrast compared to untreated cells. …”
  17. 17937

    Warts downregulation in the larval trachea rescues growth restriction and enhances oxygen delivery. by Daniel M. Wong (679523)

    Published 2014
    “…<p>[A–B] Downregulation of Warts in the larval trachea led to a statistically significant increase in larval size under hypoxic conditions (n = 24), as compared to the hypoxic wildtype control (<i>btl></i>) (n = 30). …”
  18. 17938

    Effect of palladin depletion on terminal differentiation of C2C12 cells. by Ngoc-Uyen-Nhi Nguyen (723223)

    Published 2015
    “…Note that palladin depletion resulted in a decrease of the fusion index at the late stage of differentiation. …”
  19. 17939

    Dspastin dosage affects LD number and size in fat bodies and TAG levels in the larvae. by Chrisovalantis Papadopoulos (722102)

    Published 2015
    “…Scale bar, 50 μm. (B-D) Quantification of LDs number (B), LD total area (C) and LDs size distribution (D) of genotypes shown in A. …”
  20. 17940

    9.2.27PE in combination with ABT-737 causes synergistic cell cytotoxicity in melanoma cells. by Karianne Risberg (207221)

    Published 2011
    “…<p>(A) The 9.2.27PE immunotoxin caused a time- and dose dependent decrease of cell viability in melanoma cells. …”