Search alternatives:
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
n decrease » nn decrease (Expand Search), _ decrease (Expand Search), _ decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
n decrease » nn decrease (Expand Search), _ decrease (Expand Search), _ decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1521
-
1522
-
1523
-
1524
The mean arterial blood pressure and average heart rate decrease during cardiac arrest.
Published 2014“…<p>Both mean arterial pressure (MAP; top) and heart rate (HR; bottom) decrease similarly for both AGS and rat and return to near normal after CA. …”
-
1525
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1526
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1527
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1528
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1529
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1530
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1531
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1532
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1533
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1534
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1535
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1536
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
1537
-
1538
-
1539
-
1540